Lightweight Attentional Feature Fusion: A New Baseline for Text-to-Video Retrieval

Fan Hu, Aozhu Chen, Ziyue Wang, Fangming Zhou, Jianfeng Dong, Xirong Li ;

Abstract


"In this paper we revisit feature fusion, an old-fashioned topic, in the new context of text-to-video retrieval. Different from previous research that considers feature fusion only at one end, let it be video or text, we aim for feature fusion for both ends within a unified framework. We hypothesize that optimizing the convex combination of the features is preferred to modeling their correlations by computationally heavy multi-head self attention. We propose Lightweight Attentional Feature Fusion (LAFF). LAFF performs feature fusion at both early and late stages and at both video and text ends, making it a powerful method for exploiting diverse (off-the-shelf) features. The interpretability of LAFF can be used for feature selection. Extensive experiments on five public benchmark sets (MSR-VTT, MSVD, TGIF, VATEX and TRECVID AVS 2016-2020) justify LAFF as a new baseline for text-to-video retrieval."

Related Material


[pdf] [supplementary material] [DOI]