S2Net: Stochastic Sequential Pointcloud Forecasting
Xinshuo Weng, Junyu Nan, Kuan-Hui Lee, Rowan McAllister, Adrien Gaidon, Nicholas Rhinehart, Kris M. Kitani
;
Abstract
"Predicting futures of surrounding agents is critical for autonomous systems such as self-driving cars. Instead of requiring accurate detection and tracking prior to trajectory prediction, an object agnostic Sequential Pointcloud Forecasting (SPF) task was proposed in prior work, which enables a forecast-then-detect pipeline effective for downstream detection and trajectory prediction. One limitation of prior work is that it forecasts only a deterministic sequence of future point clouds, despite the inherent uncertainty of dynamic scenes. In this work, we tackle the stochastic SPF problem by proposing a generative model with two main components: (1) a conditional variational recurrent neural network that models a temporally-dependent latent space; (2) a pyramid-LSTM that increases the fidelity of predictions with temporally-aligned skip connections. Through experiments on real-world autonomous driving datasets, our stochastic SPF model produces higher-fidelity predictions, reducing Chamfer distances by up to 56.6% compared to its deterministic counterpart. In addition, our model can estimate the uncertainty of predicted points, which can be helpful to downstream tasks."
Related Material
[pdf]
[DOI]