Panoramic Human Activity Recognition
Ruize Han, Haomin Yan, Jiacheng Li, Songmiao Wang, Wei Feng, Song Wang
;
Abstract
"To obtain a more comprehensive activity understanding for a crowded scene, in this paper, we propose a new problem of panoramic human activity recognition (PAR), which aims to simultaneously achieve the the recognition of individual actions, social group activities, and global activities. This is a challenging yet practical problem in real-world applications. To track this problem, we develop a novel hierarchical graph neural network to progressively represent and model the multi-granular human activities and mutual social relations for a crowd of people. We further build a benchmark to evaluate the proposed method and other related methods. Experimental results verify the rationality of the proposed PAR problem, the effectiveness of our method and the usefulness of the benchmark. We have released the source code and benchmark to the public for promoting the study on this problem."
Related Material
[pdf]
[supplementary material]
[DOI]