Memory-Augmented Model-Driven Network for Pansharpening
Keyu Yan, Man Zhou, Li Zhang, Chengjun Xie
;
Abstract
"In this paper, we propose a novel memory-augmented model-driven deep unfolding network for pan-sharpening. First, we devise the maximal a posterior estimation (MAP) model with two well-designed priors on the latent multi-spectral (MS) image, i.e., global and local implicit priors to explore the intrinsic knowledge across the modalities of MS and panchromatic (PAN) images. Second, we design an effective alternating minimization algorithm to solve this MAP model, and then unfold the proposed algorithm into a deep network, where each stage corresponds to one iteration. Third, to facilitate the signal flow across adjacent iterations, the persistent memory mechanism is introduced to augment the information representation by exploiting the Long short-term memory unit in the image and feature spaces. With this method, both the interpretability and representation ability of the deep network are improved. Extensive experiments demonstrate the superiority of our method to the existing state-of-the-art approaches. The source code is released at https://github.com/Keyu-Yan/MMNet."
Related Material
[pdf]
[supplementary material]
[DOI]