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Abstract. This supplementary material consists of ten parts. First, we
describe our real-time algorithm for generating partial point cloud in
detail in Sec 1, and provide more details in training strategy and hyper-
parameters in Sec 2. In Sec 3, we show the influence of domain gap on
supervised methods quantitatively. Then, we check how far our proposed
cross-domain method away from supervised methods trained on target
domain in Sec 4. After that, we analyse the impact of iteration steps on
completion performance in Sec 5 and investigate the influence of domain
factor disentanglement in Sec 6. Next, we conduct extra ablation study of
view -point prediction and show the results in Sec 7. Finally, we visualize
domain factor and domain-invariant shape factor in Sec 8, provide more
visual results in Sec 9, and discuss about the potential of realism metrics
for real scan completion in Sec 10.

1 Algorithm for Real-time Partial Point Cloud
Generation

In order to scan the complete point cloud from various view-points and generate
partial shape alongside the training procedure, we design a real-time implemen-
tation of z-buffering [10] for point cloud. The detailed algorithm is listed in
Algorithm 1. In our algorithm, we first transform the point cloud into camera
coordinate and obtain the depth of each point (Algorithm 1(1-5)). Then, for
each pixel, we obtain the minimum distance of each point that can be rendered
on this pixel (Algorithm 1(6-13)). Finally, we check the visibility of each point
and generate the partial point cloud (Algorithm 1(14-20)).
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In the training procedure, the average run-time for generating a batch of
partial point clouds is 0.0273s on a single GTX 1080Ti, only 12.05% of average
run-time for training one batch (i.e.0.2265s). This indicates our algorithm can
make real-time partial point cloud generation possible for training, and this is
because we circumvent the time-consuming loops in z-buffering and utilize the
parallelism in tensor operation. We also provide the code for batch partial point
cloud generation and more implementation details in “realtime_render.py”.

Algorithm 1: Real-time partial point cloud generation.

Input: Complete Shape P., Resolution R, Tolerance ¢, Number of Point N,
Box Size L
Output: Partial Shape P,
1 > Change to camera coordinate.
az, el = random_view()
P. = rotate(P.,az,el)
> Calculate the depth of point to camera plane.
depth = -L - P.[z]
> Initialize pixel distance to camera plane.
plane_dis = -2L x ones(R,R,N)
> Get the index in plane_dis for changing.
grid_idx = concat([grid(P.[z]),grid(Pe[y])],1)
idx = concat([grid_idx,arange(N)],1)
> Get the plane depth.
plane_dis[idx] = depth
13 plane_depth = max(plane_dis,axis=2)
14 > Obtain the index of visible point.
15 plane_mask = plane_depth <= -2L
16 plane_depth = 2L xplane_mask + plane_depth - ¢
17 point_vis = max(plane_dis >= plane_depth,axis=(0,1))
18 point_vis_iidx = choice(where(point_vis > 0.5),N)
19 > Generate partial point cloud.
20 Pp = Pc|point_vis_idx]
21 return P,
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2 Implementation Details

For better understanding of our method, we provide more implementation details
of our training strategy and hyper-parameters in Algorithm 2. Here, £7,. and
L., L5, and L!  are the reconstruction losses and completion losses defined
by Eq. (5) and Eq. (6) in main paper. £,, is the view-point prediction loss
given in Eq. (1) of our main manuscript, while £45 and L4; are both binary
cross entropy loss for domain classification where a gradient reverse layer [5] is
utilized between L4; and domain-invariant shape factor. Leons and L,, are the

factor permutation consistency loss and optimization stage loss formulated in
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Eq. (8) and Eq. (12) of our main paper. As shown in our method, we first learn
an disentangled representation for cross-domain completion (Algorithm 2(4-23)).
Here, we only add factor permutation consistency loss after 120 epoch, when the
three factors have been learned preliminarily in encoder. In case of over-fitting to
partial shapes in target domain, we only add completion loss for target domain
Lt . after 160 epoch. The batch size can be set to 10 on a single GTX 1080Ti.
In the second stage, we further adapt our prediction to each specific instance
within the target domain to ensure the consistency between completed point
cloud and input partial shapes (Algorithm 2(25-33)). Only 4 iterations in the

optimization stage are enough to obtain the desirable performance.

Algorithm 2: OptDE.

Input: Complete Source Shapes P., Partial Target Shapes P]f, Partial Test
Shapes Piest
Output: Completed Test Shapes Peom

1 > Initialization.
2 Init Peom =[], init(Enc, Dec, VP, Disl, Dis2)
3 > Learn disentangled factors for cross-domain completion.
4 for epoch € [0,1,---,199] do
5 for iter_i € [0,1,---,144] do
6 Ls=L:m +05L:..; backward(Ls)
7 Ly =0.004 x (Lop + Las +0.01La;); backward(Ly)
8 if epoch >= 120 then
9 | Le=0.06Lcons; backward(L.)
10 end
11 if epoch >= 160 then
12 | L= Ll +0.15LL,.; backward(L:)
13 else
14 ‘ Ly = 0.15LL.; backward (L)
15 end
16 step()
17 end
18 end
19 save(Enc!,Dect)

(&)
(=]

> Adapt to each input instance with target domain.

21 for P € Picst do

22 Decinit = DecT, Zinit = 0® fa ® fs

23 for iter_i € [0,1,2,3] do

24 Lop = Lop(Dec(z), P, z); backward(Lop)
25 step()

26 end

27 append(Peom, Dec™(2"))

28 end

N
©

return P.om
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3 Comparison with Supervised Methods on
Cross-Domain Completion

In order to show the influence of domain gap on supervised point cloud com-
pletion methods and the advantage of our cross-domain completion method,
several prevailing supervised methods trained on source domain are evaluated
on the target domain. Without loss of generality, we take CRN as our source
domain and evaluate the performance on target domain ModelNet. The results
are reported in Table 1.

Methods ‘Plane Car Chair Lamp Sofa Table Avg.
PCN [15] 4.25 9.32 22.60 70.01 16.69 139.61 43.75
TopNet [11] 4.21 9.36 23.60 67.00 17.71 131.20 42.18
MSN [7] 3.20 11.42 19.81 92.30 23.14 81.15 38.50
VRCNet [8] 514 9.34 2291 46.40 15.75 67.65 27.87

OptDE(Ours) | 2.18 9.80 14.71 39.74 19.43 9.75 15.94

Table 1. Cross-domain completion performance of supervised methods and our method
on ModelNet. We take [CDJ] as our metric to evaluate the performance of each methods
which is scaled by 10%.

We can see these supervised method trained on CRN cannot generalize well
to predict the complete shape in ModelNet due to the domain gap. This also
reflects the influence of domain gap on completion performance which usually
occurs in real scan completion. On the contrary, our method only needs com-
plete shape from source domain and partial scan from target domain which is
usually available for training, and perform much better on cross-domain shape
completion.

4 Distance to Supervised Methods Trained on Target
Domain

In order to check how far away our method from prevailing supervised methods
trained on the target domain, we treat ModelNet as our source domain and
evaluate on the shared categories in the test set of target domain CRN. It is
noteworthy, we only utilize complete shapes from ModelNet and partial clouds
from CRN for training. Meanwhile, all the supervised methods are trained by
partial-complete pairs from training set of target domains CRN. We also train
our backbone in a supervised manner and test on CRN for better evaluation.
We report the results in Table 2.

We can see in this table, with no complete shapes from CRN used for training,
there are still some gaps between the completion performance of our method and
prevailing supervised methods trained on paired partial-complete shapes from
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Methods ‘pair‘compl. ‘Plane Car Chair Lamp Sofa Table Avg.
PCN [15] V| v |35 64 110 116 11.5 104 9.1
TopNet [11] v v 41 78 134 148 16.0 12.9 11.5
MSN [7] v v 29 71 106 93 120 9.6 8.6
CRN [12] v v 23 6.2 88 85 113 93 7.7
Supervised(Ours)| v v 3.5 6.2 128 127 119 120 9.9
OptDE(Ours) X X 5.0 10.0 18.1 20.2 20.2 185 15.3

Table 2. Completion results on CRN. We take [CDJ] as our method to evaluate
the performance of each methods which has been scaled by 10*. pair: paired partial-
complete point clouds from CRN are required for training. compl.: complete point
clouds from CRN are required for training.

CRN. This may spur more works studying how to better handle the output
domain gap and complete cross-domain shapes under no knowledge of complete
shapes from target domain.

5 Iteration Steps in Optimization

Here, we attempt to analyse the influence of iteration steps during optimization
on final completion performance. Following the setting of our main manuscript,
we take CRN as our source domain and ModelNet as our target domain. Given
the good initial prediction provided by disentangled encoding, we take differ-
ent iteration steps (e.g.1,2,4,8,16) in optimization stage to make the output
predictions consistent to input shapes. We report the Chamfer Distance (x10%)
between the Ground Truth and initial predictions as well as optimized predic-
tions after different iteration steps in Table 3.

Iterations‘Plane Car Chair Lamp Sofa Table‘ Avg.

Step 0 2.19 9.80 15.11 42.94 21.45 10.26 [16.96
Step 1 2.25 9.80 14.90 41.69 20.47 9.88 |16.50
Step 2 2.16 9.80 14.78 41.06 19.88 9.77 |16.24
Step 4 2.18 9.80 14.71 39.74 19.43 9.75 |15.94
Step 8 2.21 9.80 14.73 39.18 19.83 9.87 |15.94
Step 16 220 9.79 14.74 39.15 20.31 9.85 |16.01

Table 3. Ablation study on iteration steps in optimization procedure where
[CDJ](x10%) is taken to evaluate the performance.

It shows optimization can converge within a few iterations and 4 steps are
usually enough for most categories to obtain desirable performance, and this is
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attributed to the good initialization provided by the disentangled encoding as
claimed in the main paper.

6 Disentanglement of Domain Factor

Compared with previous cross-domain completion methods [2,13] which only
learnt domain-invariant features for completion, we additionally disentangle do-
main factor to preserve domain patterns in the output prediction and show the
advantage in the main paper. Another choice to preserve domain features in
output prediction is keeping domain and shape features entangled while disen-
tangling occlusion factor. Here, we remove the discriminators which disentangle
the domain factor and domain-invariant shape factor, and only permute the oc-
clusion factor in factor permutation consistency regularization. We take CRN as
source domain and report the results of entangled domain-shape encoding (ent.)
and disentangled domain, domain-invariant shape encoding (dist.) on ModelNet
in Table 4.

Methods |Plane Car Chair Lamp Sofa Table Avg.
Pcl2pcl [2] 18.53 17.54 43.58 126.80 38.78 163.62 68.14
Shapelnversion [16]| 3.78 15.66 22.25 60.42 22.25 125.31 41.61
CycledCompl. [13] | 577 11.85 26.67 83.34 22.82 21.47 28.65
OptDE(ent.) 2.45 10.39 14.81 40.61 21.99 11.27 16.92
OptDE(dist.) 2.18 9.80 14.71 39.74 19.43 9.75 15.94

Table 4. Ablation study of disentangled domain, domain-invariant shape factor on
ModelNet dataset. We take [CD{](x10*) as our metric for performance evaluation.

We can see only manipulating occlusion factor while keeping domain and
shape feature entangled can still outperform previous methods which just extract
domain-invariant features because domain information can also be preserved in
the output prediction to some extent. Even though, disentangling domain factor
and domain-invariant shape factor can explicitly preserve domain information
in the completed point cloud, thus perform better than entangled representation
of domain and shape factor.

7 View-Point Prediction.

We choose to directly predict the rotation angle for view-point prediction. Mean-
while, another choice is to predict the rotation matrix /\;lmt which is continuous.
Here, we predict the rotation matrix from an intermediate 6D representation
through a Gram-Schmidt-like process [17]. After that, the Ground Truth rota-
tion matrix of view-point M,.,; will guide the learning of occlusion factor through
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supervising the view-point predictor module L., = [|[Mot — Mth%. Here, we
report the results of supervising through rotation matrix (mat.) and rotation
angle (ang.) prediction in Table 5.

Methods ‘Plane Car Chair Lamp Sofa Table Avg.

OptDE(mat.)| 2.10 11.26 14.82 50.07 23.63 10.25 18.69
OptDE(ang.) | 2.18 9.80 14.71 39.74 19.43 9.75 15.94

Table 5. Ablation study of occlusion factor supervision strategy on ModelNet. We use
[CDY](x10") to compare these two strategies.

We can see the supervision through rotation angles works better, and this
is because the parameters of rotation angles (i.e., azimuth and elevation) are
independent and more explicit than the rotation matrix given partial shapes.

8 Factor Visualization

Here, we visualize the learnt domain factor and domain-invariant shape factor for
better understanding of our method. To visualize the learnt domain factor, we
first obtain the domain factors ( fé‘/[ and de ) of samples from ModelNet P and
CRN P through trained Enct. Then, we swap domain factors between samples
from ModelNet and CRN and generate new shapes. Generated point clouds with
ModelNet/CRN domain factors are denoted as PM /PC. Later, we feed P and
P into Enc! again to obtain the domain factors of newly generated samples
M and f§. Here, we visualize f34, ¢, fM and f¢ after t-SNE in Fig 1 (a). It
shows the domain distribution of shapes can be changed through manipulating
the learnt domain factors. Besides, we show the learnt domain-invariant shape
factors of samples from ModelNet fM and CRN f¢ in Fig 1 (b) which shows
the learnt shape factor is invariant to domain.

coNE

ModelNet 7/
54 o Generated CRN e .

(a) e Generated ModelNet £ (b) e w ModelNet 7

Fig. 1. T-SNE visualization of (a) domain factor fq and (b) domain-invariant shape
factor fs.
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9 Visualization Results

In this section, we present more visualization results of our method on real scans
from ScanNet [3], MatterPort3D [1] and KITTI [6] as well as on synthesized
datasets ModelNet [14] and 3D-FUTURE [4]. We present additional visual re-
sults of our method and previous cross-domain completion methods on real scans
from ScanNet, MatterPort3D and KITTI in Figure 2. In Figure 3, we provide
more qualitative results on the test set of 3D-FUTURE. Finally, we visualize
more completion results on test set of ModelNet in Figure 4.

ScanNet

MatterPort3D

KITTI

SSS S¥>S

Input Pel2pcl Shapelnversion Cycle4Completion  OptDE(ours) Input Pei2pel Shapelnversion Cycle4Completion OptDE(ours)

Fig. 2. More visualization results on the data of ScanNet, MatterPort3D and KITTI.
Partial point clouds, results of pcl2pcl Shapelnversion, Cycle4Completion and our
methods are presented separately from the left to the right.

Input Pcl2pcl Shapelnversion Cycle4Completion OptDE(ours) GT

Fig. 3. More visualization results on the test set of SD-FUTURE. The left-most images
are input partial shapes and the following images are completed point cloud predicted
by pcl2pcl, Shapelnversion, Cycle4dCompletion and our method as well as Ground Truth

respectively.
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Input Pcl2pcl Shapelnversion Cycle4Completion OptDE(ours) GT

Fig. 4. More visualization results on the test set of ModelNet. The images from the
left to the right are input partial clouds, predictions given by pcl2pcl, Shapelnversion,
Cycle4Completion and ours, as well as target shapes separately.

10 Future Work Discussion

As complete shapes of real scans are usually unavailable for the evaluation of
cross-domain point cloud completion, previous works [16] utilized metrics like
UCD and UHD to check the fidelity of completed point clouds. As suggested by
our reviewers, we attempt to take realism metric like Frechet Distance (FD) to
measure the similarity between predicted complete shapes and realistic complete
ones. Concretel, we take the form of Frechet Point Cloud Distance (FPD) [9] for
evaluation which is a common metric in point cloud generation, and FPD used
here is formulated as:

1
FPD(R,P) = ||un — g% + Tr (ZR F -2 (EREP)z) (1)

where R and PP are the feature distributions of realistic 3D shapes and predicted
complete shapes, while y and X are the mean and covariance matrix of corre-
sponding features. Here, we take complete shapes in 3D-FUTURE as realistic
ones due to the lack of complete real shapes. Results show that ours is more
similar to realistic complete shapes than Shapelnversion in ScanNet (chair: 1.74
v.s. 1.80, table: 2.14 v.s. 2.54) and MP3D (chair: 1.60 v.s. 1.74, table: 2.33 v.s.
3.19). We believe that further researches on the realism metrics for real scan
completion will be a promising future work.
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