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A Implementation Details

A.1 Network Architectures

In the proposed FITE framework, four neural networks are employed for the
learning of implicit template and pose-dependent deformation, including (i) the
neural implicit template F c in the canonical pose, (ii) the pose-agnostic template
correction module C, (iii) U-Nets [13] Ud for projection-based pose encoding, and
(iv) the pose-dependent deformation decoder D.

Implicit Templates For the implicit template F c, we apply the same architec-
ture as SNARF [2] as the shape network. Please refer to their original paper for
details. The only modifications made to [2] are the replacement of the skinning
network by our fixed diffused skinning (Section A.2) and the sampling strategy
for training (Section A.4).

For the pose-agnostic template correction module C, we apply a small 4-
layer MLP. Each layer except the last one of this MLP is followed by a 1D batch
normalization [5] and a softplus [3] activation. The input dimension for C is
Cgeom = 64, and the intermediate layers’ dimensions are 64, 64, 64, 3.

Pose-dependent Deformations For the pose encoding U-Nets [13] Ud, we
apply the same structure as the one used in POP [11] which downsamples the
input 7 times, but with reduced channel sizes. Except the input, all other chan-
nels in the U-Nets are reduced to 1/4 the size of their counterparts in POP [11].
The output pose feature maps from each Ud thus have Cpose = 16 channels. Note
that, with the reduced number of channels, even though we are using 4 U-Nets
as opposed to a single U-Net in [11], the total number of parameters of our pose
encoders is approximately 1/4 of that in [11]. Recall that we have Nv = 4 views
for rendering position maps. With each view contributing Cpose = 16 channels,
the number of channels for a concatenated pose feature vector is Nv ·Cpose = 64,
which is consistent with [11] that extracts a 64-channel pose feature with a single
network.

For the pose-dependent offset decoderD, we apply the same architecture as in
[11]. The input is a concatenation of the pose feature (Nv ·Cpose = 64 channels),
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the per-point geometric feature (Cgeom = 64 channels) and the coordinate of the
base point in the canonical space pck (3 channels), which add to 131 channels.
The intermediate layers’ dimensions are 256, 256, 256, 256, 387, 256, 256, 3, where
the 5th layer takes a skip connection from the input by concatenation. The 6th
branches out with identical structures to predict offsets rck and the normals nc

k,
respectively. All layers except the last are followed by batch normalizations [5]
and softplus activations [3].

A.2 Computing Diffused Skinning

We compute diffused skinning in the whole 3D space based on the surface skin-
ning weights of SMPL [9], which has 24 joints, and thus 24 components of skin-
ning weights. Note that the zero pose (T-pose) of the SMPL body template is not
suitable for computing volumetric skinning. We follow previous work [2,14,15] to
define the canonical pose as standard T-pose with legs stretched out. Moreover,
to avoid large distortions for long dresses, we set the Euler angle for both legs
as 15 degrees. For fairness, baseline methods SNARF [2] and SCANimate [14]
are trained with the same canonical pose.

Let {vsk}
Ns

k=1 be the vertices of the SMPL template T in this canonical pose
with Ns = 6890, and let ws(vsk) = (ws

1(v
s
k), · · · , ws

24(v
s
k)) ∈ R24 be the SMPL

skinning weights at vsk. The first step is to compute the along-surface gradients
∇Tw

s(vsk). Recall that in the 1D case, the gradient of a scalar function y = f(x)
can be approximated by

∇xf(x) ≈
f(x+ h)− f(x)

h
=

f(x+ h)− f(x)

|h|
· h

|h|
(1)

as long as h is small. In analogy, if vsk′ is a neighbor of vsk on the SMPL mesh
template, i.e., connected by an edge, then

w(vsk′)− w(vsk)

∥vsk′ − vsk∥2
· vsk′ − vsk
∥vsk′ − vsk∥2

(2)

approximates the gradient of ws along the direction from vsk to vsk′ . Note that
Eq. (2) should be considered component-wise for ws. To approximate ∇Tw

s(vsk),
we can simply average Eq. (2) over all tangent directions emanating from vsk,
i.e., if Nbr(vsk) is the set of all neighboring vertices of vsk on T , then

∇Tw
s(vsk) ≈

1

|Nbr(vsk)|
∑

v∈Nbr(vs
k)

w(v)− w(vsk)

∥v − vsk∥2
· v − vsk
∥v − vsk∥2

. (3)

We remark that in theory, the summation Eq. (3) should be weighted if the
directions vsk → v are not evenly distributed. However, since the SMPL template
has rather regular connectivity, we found that a simple average is enough.

With ∇Tw
s(vsk) already computed, we minimize the following energy as de-

scribed in the main paper:

λs
p

∫
p∈T

∥w(p)− ws(p)∥22 + λs
g

∫
p∈T

∥∇pw(p)−∇Tw
s(p)∥22 + λs

reg

∫
R3

∥∥∇2w
∥∥2
2
.

(4)
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In a discrete setting, the first and the second term becomes summations:

Ns∑
k=1

∥w(vsk)− ws(vsk)∥
2
2 and

Ns∑
k=1

∥∇pw(v
s
k)−∇Tw

s(vsk)∥
2
2 . (5)

We apply an off-the-shelf solver [6] which applies the Galerkin formulation [8]
to Eq. (4) and seeks a solution which is a linear combination of B-splines bases
attached to the nodes of an octree. Note that the last regularization terms forces
the solution to be linear (and thus also smooth). We set λs

p = 103, λs
g = 5 ×

10−2, λs
reg = 1 and set the maximum octree depth as 8 in the solver. The

solution w is stored as a 2563 grid. During the training of stage one, the forward
skinning field is queried from this grid, instead of being jointly optimized with
the canonical shape network.

A.3 Dataset Preprocessing

ReSynth The ReSynth [11] dataset contains 24 outfits, obtained by applying
physics-based simulation [4] to a set of artist-designed outfits. This dataset con-
tains non-closed point clouds which are unsuitable for implicit methods as well
as our stage-one training. We thus apply screened Poisson surface reconstruc-
tion [7] to the dataset to obtain closed meshes. To avoid holes in the recon-
structed meshes, we use the Dirichlet boundary condition in [7] (see Fig. S1 for
a comparison of different boundary conditions). However, since simply resam-
pling the reconstructed meshes for training FITE and POP lead to less details,
we combine the original point samples with points newly sampled from the re-
construction according to the following rule: (i) For each specific scan, suppose
P is the point set from the original ReSynth release (40k points per scan), and
suppose P̂ is the point set newly sampled from reconstructed meshes (10k points
per scan); (ii) Find all points p̂ ∈ P̂ such that ∥p− p̂∥2 ≥ 0.01 for all p ∈ P; (iii)
Randomly select a subset of P of the same size as the point set found in step
(ii) and replace them with p̂. For the long dress example (Felice 004), this would
replace at most ∼ 2k points per scan, which does not affect the overall geometry.
This processing step complements the original scans with points sampled from
the reconstructed meshes. For fairness, POP [11] is also retrained on such data.

CAPE The CAPE [10] dataset contains registered scans for training, which
do not requiring the same resampling strategy for ReSynth. We simply followed
POP [10] to remove the global orientation and translation for training.

A.4 Training and Evaluation Details

For FITE, we train SNARF [2] with our diffused skinning for 8000 iterations per
outfit in stage one. This takes ∼ 3.5 hours on a RTX 3090 GPU. During stage
one, we also sample more densely near the hand to assure the appearance of
finger within such a short training period. For stage two, we set λp = 104, λn =
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Non-closed scan Neumann boundary Dirichlet boundary

Fig. S1. Effects of different boundary conditions when applying screened Poisson re-
construction [7] to non-closed scans. We choose the Dirichlet boundary condition in
data preprocessing to naturally close the holes.

1, λc,reg = 4 × 102, λr,reg = 2 × 103, λg,reg = 1. Our model is trained for
400 epochs with a batch size of 4. Note that λn is set to 10−6 before the 250th
epoch. This is to ensure that normal predictions are trained only after the points
have stabilized. For all baselines we use the default settings in their official
implementations for training.

For evaluation, we apply the Chamfer-L2 distance dcham and the cosine sim-
ilarity to reconstructed meshes. Let M1 and M2 be the two meshes to compare,
respectively. The metrics are obtained by first sampling two uniform point sets
P1 and P2 and then computing:

dcham =
1

|P1|
∑
p∈P1

∥p− p′∥22 +
1

|P2|
∑
q∈P2

∥q − q′∥22 , (6)

Scos =
1

|P1|

∣∣∣∣∣∣
∑
p∈P1

n1(p) · n2(p
′)

∣∣∣∣∣∣+ 1

|P2|

∣∣∣∣∣∣
∑
q∈P2

n2(q) · n1(q
′)

∣∣∣∣∣∣ , (7)

where p′ ∈ P2 is such that ∥q − q′∥2 is minimized and q′ ∈ P1 is such that
∥q − q′∥2 is minimized.

A.5 User Study

The task of this user study is to determine the perceptual quality of FITE versus
POP [11] in extrapolated poses with seen outfits. Each example shown to the
viewer is side-by-side comparison of the outputs of FITE and POP with the same
clothing in the same pose. The left-right order is randomly shuffled to prevent
the preference to a certain side. The outfit and the pose for each example are
randomly chosen with equal probability from the official ReSynth [11] test set.
Moreover, the rendering direction (front or back) and the rendered geometry
(point cloud or mesh) are also random. The viewers are asked to vote on the
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one with higher overall visual quality after considering factors such as realism,
details and artifacts. Fig. S2 shows a few examples of the side-by-side image
pairs used in this study. The votes are counted per example, i.e., if a viewer
votes FITE as having higher visual quality for a specific image pair, we add one
vote to FITE, otherwise the vote goes to POP.

Fig. S2. Examples of image pairs used in the user study (rendered with Open3D [16]).

There are 421 individuals participating in the user study, where each is given
20 image pairs of either point clouds or meshes. The user study receives a total of
4690 votes on the point cloud results, among which 3537 (75.42%) favor FITE,
and a total of 3730 votes on the meshed results, among which 2808 (59.37%)
favor FITE.

A.6 Novel Scan Animation

Given one or a few novel scans, we first train a canonical template using these
novel scans with diffused skinning. After obtaining this canonical template, we
uniformly sample a set of points {pck}k in the template, along with the corre-
sponding skinning weights. Let {pck,i}k denote the point set sampled on the i-th
canonical template used in pretraining a FITE model. We then initialize the
geometric features for {pck} as follows: (i) For each subject i used in pretrain-
ing, propagate the pretrained geometric feature of {pck,i}k to {pck}k via kNN
(k = 16) and inverse distance weighting; (ii) Average these geometric features
over i. After this initialization, we forward the model and minimize the differ-
ence between the given scans and the predicted point clouds (only the geometric
features are optimized and network weights are fixed). After convergence, the
geometric features and the pretrained network can be used to animate the scan
to novel poses.

B Extended Evaluations

In this section we provided extended evaluations, including: (i) more results of
interpolation and extrapolation experiments; (ii) ablation studies that evaluate
the individual modules.
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B.1 More Results of Interpolation and Extrapolation Experiments

Table S1 and Table S2 show the complete quantitative results of interpolation
experiments on the ReSynth dataset [11] and the CAPE dataset [10], respec-
tively. Since implicit methods have been shown to perform notably worse (see
Table 1 and Fig. 4 in the main paper), we only evaluate the cross-outfit models
of POP [11] and FITE. Our method exhibits clear advantages on ReSynth where
the outfits vary in topology and style. On the other hand, for the CAPE dataset
which contains only tight clothing, our method does not perform notably better
since using learned templates instead of SMPL/SMPL-X [9,12] is not necessary.
However, improving metrics for tight clothing is not the major focus of this work.

We report qualitative evaluations for pose extrapolation experiments in Ta-
ble S3 and Table S4. These models are trained and tested on the official ReSynth
train/test split. However, since extrapolated poses may correspond to stochastric
clothing appearances, these metrics are only included for completeness and may
not faithufully reflect the modeling capability of different methods. In Fig. S3,
S4 and S5, we present mode qualitative results evaluated on extrapolated poses.
The advantages of our method over POP [11] is obvious: no seams in clothing,
more uniformly distributed points and better details.

Table S1. Quantitative results of interpolation experiments on the ReSynth dataset.
Note that all dcham reported below have been multiplied by 105.

Method
ReSynth Data

Alexandra 006 Anna 001 Beatrice 025 Carla 006
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 0.550 0.950 0.557 0.959 0.203 0.963 0.154 0.968
FITE 0.449 0.958 0.385 0.965 0.251 0.965 0.169 0.971

Celina 005 Cindy 005 Corey 006 Eric 006
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 0.175 0.970 0.212 0.967 0.295 0.960 0.521 0.945
FITE 0.193 0.973 0.232 0.970 0.277 0.965 0.445 0.950

Eric 035 Carla 004 Christine 027 Felice 004
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 1.625 0.894 0.485 0.939 0.421 0.960 1.718 0.920
FITE 0.615 0.923 0.299 0.956 0.455 0.963 1.355 0.933

B.2 Ablation Studies

We conduct ablation studies to evaluate the key components of our method:
projection-based pose encoding (PPE) and diffused skinning. The experiments
in this section are conducted under the same settings as the interpolation exper-
iments.
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Table S2. Quantitative results of interpolation experiments on the CAPE dataset.
Note that all dcham reported below have been multiplied by 107.

Method
CAPE Data

00096 jerseyshort 00096 longshort 00096 shirtlong 00096 shirtshort
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 4.372 0.986 3.546 0.988 6.687 0.981 6.557 0.981
FITE 4.168 0.987 5.335 0.987 8.571 0.981 6.653 0.982

00096 shortlong 00096 shortshort 00215 jerseyshort 00215 longshort
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 5.994 0.982 4.836 0.985 6.626 0.983 6.087 0.984
FITE 5.892 0.982 4.813 0.986 6.856 0.983 6.131 0.985

00215 poloshort 00215 shortlong 03375 blazerlong 03375 longlong
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 9.099 0.978 11.038 0.977 25.227 0.966 19.389 0.971
FITE 7.569 0.980 11.387 0.978 27.409 0.964 20.280 0.971

03375 shortlong 03375 shortshort
dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 14.968 0.976 16.812 0.975
FITE 16.207 0.976 17.661 0.975

Table S3. Quantitative results of extrapolation experiments on the ReSynth dataset.
Note that all dcham reported below have been multiplied by 105.

Method
ReSynth Data

Alexandra 006 Anna 001 Beatrice 025 Carla 006
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 2.318 0.899 0.972 0.941 0.392 0.956 0.413 0.952
FITE 2.248 0.903 1.105 0.939 0.525 0.954 0.492 0.948

Celina 005 Cindy 005 Corey 006 Eric 006
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 0.468 0.954 0.619 0.946 0.716 0.935 1.100 0.920
FITE 0.574 0.953 0.704 0.944 0.829 0.932 1.133 0.918

Eric 035 Carla 004 Christine 027 Felice 004
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 2.761 0.864 0.796 0.926 3.021 0.914 16.768 0.763
FITE 2.071 0.870 0.754 0.936 3.033 0.913 16.106 0.759
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FITE FITE, meshed POP POP, meshed

Fig. S3. Extended qualitative results for pose extrapolation experiments.
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FITE FITE, meshed POP POP, meshed

Fig. S4. Extended qualitative results for pose extrapolation experiments.
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FITE FITE, meshed POP POP, meshed

Fig. S5. Extended qualitative results for pose extrapolation experiments.
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Table S4. Quantitative results of extrapolation experiments on the CAPE dataset.
Note that all dcham reported below have been multiplied by 105.

Method
CAPE Data

00096 jerseyshort 00096 longshort 00096 shirtlong 00096 shirtshort
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 0.450 0.970 0.414 0.974 0.559 0.958 0.514 0.960
FITE 0.722 0.951 0.706 0.953 0.850 0.942 0.827 0.941

00096 shortlong 00096 shortshort 00215 jerseyshort 00215 longshort
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 0.700 0.953 0.475 0.968 0.413 0.968 0.408 0.969
FITE 1.000 0.935 0.787 0.948 0.695 0.956 0.674 0.956

00215 poloshort 00215 shortlong 03375 blazerlong 03375 longlong
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 0.598 0.958 0.780 0.946 0.776 0.945 0.740 0.946
FITE 0.805 0.946 0.975 0.936 1.361 0.924 1.259 0.926

03375 shortlong 03375 shortshort
dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 0.522 0.958 0.523 0.956
FITE 0.975 0.937 1.068 0.935

Projection-based pose encoding (PPE) Since UV-based pose encoding in POP [11]
cannot be applied to the learned templates, we evaluate PPE by replacing UV
encoding in POP [11] with PPE (named as POP+PPE). The results are shown
in Table S5. We can observe a drop in the metrics after using PPE on POP
directly. This indicates PPE alone cannot outperform UV encoding in terms of
modeling accuracy. However, PPE is still advantageous in two aspects: (i) It
solves the discontinuity problem in UV maps (Fig. S6); (ii) It is an indispens-
able component of our framework, since the learned templates do not have a
common UV mapping and UV encoding is not applicable. Moreover, note that
POP+PPE is the same as FITE minus learned templates. This study is also a
demonstration of the benefit of using learned templates instead of minimal body
models.

Diffused skinning We evaluate our diffused skinning by replacing it with learned
skinning used in SNARF [2] and the nearest-SMPL-point skinning in LoopReg [1].
We name these two variants as FITE-LS and FITE-NS, respectively. The quan-
titative results are reported in Table S5. FITE-LS performs worse in terms of
metrics, and may fail due to local minima where an incorrect template and an
incorrect skinning field together form an accidentally correct posed geometry
(Fig. S7). On the other hand, FITE-NS can also obtain good templates and
achieve comparable performance to FITE. However, for loose clothing on which
the discontinuity of nearest-point skinning manifests, qualitative artifacts can
be observed, especially in extrapolated poses (Fig. S8).
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Table S5. Quantitative results of ablation studies on the ReSynth dataset. Note that
all dcham reported below have been multiplied by 105.

Method
ReSynth Data

Alexandra 006 Anna 001 Beatrice 025 Carla 006
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 0.550 0.950 0.557 0.959 0.203 0.963 0.154 0.968
POP+PPE 0.603 0.952 0.914 0.956 0.275 0.962 0.204 0.969
FITE-LS 1.593 0.940 0.660 0.954 0.768 0.953 2.508 0.923
FITE-NS 0.470 0.958 0.435 0.964 0.261 0.965 0.165 0.971
FITE 0.449 0.958 0.385 0.965 0.251 0.965 0.169 0.971

Celina 005 Cindy 005 Corey 006 Eric 006
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 0.175 0.970 0.212 0.967 0.295 0.960 0.521 0.945
POP+PPE 0.241 0.970 0.320 0.967 0.362 0.961 0.637 0.944
FITE-LS 0.299 0.968 0.631 0.961 0.937 0.952 0.879 0.938
FITE-NS 0.194 0.973 0.243 0.970 0.278 0.964 0.455 0.950
FITE 0.193 0.973 0.232 0.970 0.277 0.965 0.445 0.950

Eric 035 Carla 004 Christine 027 Felice 004
dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑) dcham (↓) Scos (↑)

POP 1.625 0.894 0.485 0.939 0.421 0.960 1.718 0.920
POP+PPE 1.707 0.898 0.537 0.943 0.560 0.959 2.298 0.912
FITE-LS 0.771 0.913 1.205 0.937 0.646 0.957 1.903 0.923
FITE-NS 0.621 0.922 0.300 0.956 0.488 0.963 1.541 0.926
FITE 0.615 0.923 0.299 0.956 0.455 0.963 1.355 0.933
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POP POP+PPE

Infeasible

combination

Learned templates

+UV encoding FITE GT

Fig. S6. Compared with UV encoding in POP [11], our projection-based pose encoding
(PPE) can solve the discontinuity problem and can encode learned templates without
common a UV map.

Diffused
skinning

Learned
skinning

Learned
template

Reposed
template

Pose-dependent
residuals added

GT

Fig. S7. Visualization of diffused skinning and learned skinning. Learned skinning may
fail due to local minima, leading to an incorrect reposed geometry.

C Limitations

Our work decomposes clothing deformations into articulated motions of a clothed
template (stage one) and pose-dependent non-rigid deformations (stage two).
However, LBS cannot fully account for clothing deformations, especially for loose
clothing. This means a poorly posed template possibly does not help the gener-
ation of details in stage two. In particular, if the LBS-posed template does not
match the ground truth point cloud very well, then the Chamfer loss may in-
duce nonbalanced correspondences between the ground truth and the template
to deform. For certain extreme poses, this may cause the output point cloud
to become highly nonuniformly distributed, leading to suboptimal performance
(Fig. S9). Moreover, LBS is in general not physically realistic for loose clothing.
Hence, generalizing to novel poses outside the training distribution may lead to
physically absurd results (Fig. S10). With our coarse-to-fine two-stage idea, fu-
ture work may explore replacing LBS in stage one with coarse-level physics-based
simulation, which may possibly improve the performance for certain outfits.
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Diffused
skinning

Nearest
skinning

Learned
template

Reposed
template

Pose-dependent
residuals added

Reposed
template

Pose-dependent
residuals added

Fig. S8. Visualization of diffused skinning and nearest-point skinning. Nearest-point
skinning becomes discontinuous for loose clothing and leads to poor geometry.

LBS-posed template GT
Pose-dependent
residuals added

Fig. S9. Failure case 1: The Chamfer loss does not always induce good correspondences
between GT and the LBS-posed template, leading to suboptimal performance.
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