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1 Vector Neuron Translation Invariant

In this section we verify that our VNT layers are indeed translation and rotation
equivariant, as well as explicitly present other layers, not included in the paper.

1.1 Verifying SE(3)-equivariant linear layer

We verify that the linear module fi;, (-; W), defined via a weight matrix
W € W *C acting on a vector-list feature V € R*3, such that

W =W e ROXC | 0wy =1 vie[1,C']}, (1)

is SE(3)-equivariant.

Let wj € R %€ be the j column of W, and let R € R3*3 be a rotation matrix
and T € R*? a translation vector. For fi, (-; W) to be SE(3)-equivariant, the
following must hold:

fin (VR+1¢T) = W (VR +1¢T) = WVR+ W1oT =

c
=WVR+ > w; | T=(WV)R+1cT, = fin(V)R+ 1T,  (2)
j=1
where 1¢ = [1,1,...,1]T € R®*! is a column vector of length C, and Z]C=1 =

1¢v, since (chzl Wj) [i] = ZJCZI wy;=1fori=1,...,C"

1.2 Verifying SE(3)-equivariant ReLU

We verify that the ReLU layer is SE(3)-equivariant.
Let V,V’ € RE*3 be the input and output of a ReLU layer,

V' = freru (V). (3)

Let v/ € R'*3 be a single vector, such that v/ € V. As explained in Section 3.1 of
the paper, we learn three translation equivariant linear maps, Q, K, Q € W'*x¢
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projecting the input to q,k, 0 € R'*3, yielding an origin o, a feature qo = q—o0

and a direction ko, = k — 0. The ReLU layer for a single vector neuron is then
defined via

(4)

/ O+q0 if <q07k0> Z O?
v = ) )
0+ qo — <qO, HEZH > HEZH , otherwise.

q,k, 0 are SE(3)-equivariant and according to Eq .(7) of the paper, qo, ko
are translation invariant (and rotation equivariant) as they are the subtraction
of two SE(3)-equivariant vector neurons, thus, the condition term (qo,ko) is
also translation invariant. As shown in VNN [6], the inner product of two ro-
tation equivariant vector-neurons is rotation invariance. Similarly here, assume
the input V is rotated with a rotation matrix R € R3*3, then

<CI0R7 koR> = CIORRTko = QOkoT = <CI07ko> (5)

To conclude, the condition term (qo, ko) is SE(3)-invariant.

When (qo, ko) > 0, the output vector neuron v/ = 0 + q, = q, and thus it
is SE(3)-equivariant.

When (qo, ko) < 0 the output vector neuron is

ko ko
ot {ante ) T 0
Ikoll / kol
Similarly to Eq . the term
kO > 1 <q0ak0>
Yo, = ) (7)
< Ikoll / kol (Ko, ko)

is also SE(3)-invariant.
We can now easily prove that if the input V is rotated with a rotation matrix
R € R?*3 and translation vector T' € R'*3, then

k ko R
v =oR+ 1cT + qoR — <qo, ° > i
[koll / kol

oll

k k
=(0+qo—{Qo, o Yo | R4+ 1cT =V R+ 1T, 8
( 1 <q ||ko||>||ko||> ¢ o

Thereby completing the proof.

1.3 VNT-LeakyReLU

LeakyReLU is defined in a similar manner to the ReLU layer, with slight modi-
fication to the output vector neuron, given by

v =aq+ (1 —a)Vv'greLu, (9)

where o € R
Easy to see that the v’ is SE(3)-equivariant.
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1.4 VNT-MaxPool

RNXCX?)

Given a set of vector-neuron list V € , we learn two linear maps K, O €

WEXC shared between Vy, € V.
We obtain a translation invariant direction

K={KV,—0Vy,}\ (10)
and a translation invariant features
Q={V,-OV,}\_ . (11)
The VNT-MaxPool is defined by

frax (V) = Ve[ (12)
where n* = arg max(Qnulc], Knlc]), (13)
n
where Q, € Q and K,, € K. Since Q,, K, are translation invariant, and their
inner product is also rotation invariant the selection process of n* for every
channel c is invariant to SE(3). We note that both K, O can be shared across
vector-neurons.

2 Implementations Details

2.1 Encoder architecture

In this section we elaborate on our encoder architecture. Our encoder contains
VNT layers following with VNN layers as reported in Table[l]} LinearLeakyReLU
stands for the leakyReLU with feature learning Q. For the exact VNN layers
definition (and specifically STNkd) we refer the reader to VNN [6].

3 Implicit reconstruction

Occupancy network reconstruction from a point clouds X € RN*3 with a
learned embedding z € X , learns a mapping function f(p,z) : R* x X — [0, 1].
In occupancy network completion experiment, the point cloud is sampled from
the watertight mesh, and the mesh is used as supervision to sample M training
point {pi}ﬁvzl inside and outside the mesh, indicated by {o;} € [0, 1]*. We follow
the same experiment, with slight changes. We feed our learned pose-invariant en-
coding Zg through fp, and project the points {p;} from the input pose to the
learned canonical pose by:

pi=pi—T)RT i=1,....M (14)
Therefore, our reconstruction loss is

M
Lrec = ZEBCE (fo(Di, Zs), 0i), (15)

i=1
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Table 1. Our shape-pose disentangling encoder architecture.

Name ‘ Input channel Output channel Type Split
LinearLeakyReLU 3 64//3 VNT
LinearLeakyReLU 64//3 64//3 VNT
T-invariant 64//3 64//3 VNT  Translation branch
LinearLeakyReLU 64//3 64//3 VNN
STNkd+concat 64//3 2-(64//3) VNN
LinearLeakyReLU 2-(64//3) 2-(64//3) VNN
LinearLeakyReLU 2-(64//3) 170 VNN
BatchNorm 170 170 VNN Rotation branch
Meanpool+concat 170 340 VNN
R-invariant 340 340 VNN
Flatten 340 - 3 1020 Regular
Max-pool 1020 1020 Regular

where Lpcg is binary cross entropy loss. For implicit reconstruction we have
found it beneficial to train the network in an alternating approach, where at the
first phase we backward w.r.t L, and in the second phase we backward w.r.t

Lo = MLortho + A LI (16)

consist*

4 VNT vs VNN with center subtraction

Our VNT layers are novel extensions to Vector Neuron architecture enabling
SE(3)-equivariant feature learning. Actually, SE(3)-equivariance can be simply
achieved by subtracting the mean of the input point cloud or its’ bounding
box center. However, such a procedure is prone to errors in the presence of
noise and partly occluded objects and does not produce actual SE(3)-equivariant
network components. To demonstrate the advantages of using our VNT, we
repeat the classification experiment on ModelNet40 conducted in [6], focusing
on SE(3)transformation. We use VNN-pointnet as proposed in [6] (for brevity
we will omit the suffix pointnet as all our classifiers are based on the pointnet
architecture) and variants of it: VNN-mean - a VNN classifier where at the
forward pass the input point cloud is mean-centered and VNN(2)-mean which is
similar to VNN-mean but with slightly more capacity. We implement our VNT-
pointnet with the same encoder design presented in the main paper. We report
in Table the first few layers for all encoders (the remaining layers are the same
as in VNN-pointnet [6] for all encoders). At test time, every point cloud is
presented with a single rotation and translation (drawn randomly in the range
[—0.1,0.1]). As shown in Table 3] the accuracy of our VNT classifier achieves the
highest classification accuracy by a margin. Please note also that our accuracy
of 82.5 is superior to the original VNN-pointnet tested on aligned data (74.1
according to our experiment and 77.5 according to [6]).
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Table 2. architecture differences between VNN-pointnet and VNT-pointnet. We briefly
report the first few layers for each encoder. Please refer to [6] for further details.

VNN VNN-mean VNN(2)-mean VNT  |Inch Outch|Sym
mean-subtraction mean-subtraction 3 3
VN- LLReLU VN-LLReLU VN-LLReLU  VNT- LLReLU 3 64//3
mean-pool mean-pool mean-pool mean-pool | 64//3 64//3 | x

- ] VN-LLReLU  VNT-LLReLU |64//3 64//3
- - VN-LLReLU  VNT-LLReLU |64//3 1 Te
- - Residual Residual 64//3 64//3

T x X — Tc T — X

Table 3. Accuracy comparison of VNT and VNN on ModelNet40 (higher is bet-
ter). All classifiers were trained on SE(3)augmented data and tested with the same
SE(3)augmentation (translation was drawn randomly in the range [—0.1,0.1])

VNN VNN-mean VNN(2)-mean VNT
Accuracy ‘ 0.708 0.626 0.667 0.825

In addition, since reducing the mean is a global, none-learned, procedure, it
can easily be affected by the presence of noise. We demonstrate this weakness by
adding 5 points located at (0,0,0) and then gradually translating the 5 points to
(1,1,1). For each translation step, we evaluate the accuracy of VNT and VNN-
mean as shown in Fig. Intuitively, both methods will be slightly affected
since such data is not present in the training set, but as for VNT such noise is
local, affecting mainly through the features of the noisy points, VNN-mean is
much more vulnerable, as the points move further away from the origin, all of
the points’ features are affected. This phenomenon can be seen in the drop in
accuracy in Fig. [T}

5 Discussion regarding the differences to Li et al. [13]

Liet al. [13] proposed a clever category level pose estimation utilizing SE(3) equiv-
ariant backbone. While our work shares similarities with Li et al., key differences
exist between the two methods. First, Li et al. rely on the "laziness” of the
network to generate a consistent shape using only one mlp layer as a decoder.
Similarly, the input point clouds are scaled to have a unit diagonal length, a pro-
cedure that is prone to error in the presence of noisy data. On the other hand,
we introduce a consistency loss by altering the input point cloud with a variety
of simple shape augmentations and do not scale the input point cloud. Sec-
ond, our network is SE(3)-equivariant to all orientations while Li et al. propose
SE(3)-equivariance network only within a pre-defined subgroup of orientations,
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Fig. 1. Robustness of VNN-mean centered and VNT. We introduce a noise to every
point cloud by adding 5 points placed at the origin. The points are gradually translated
from the origin to (1,1,1) as visualized in magenta on the right. The accuracy of both
methods is evaluated for every translation step as shown on the left, where the horizon-
tal axis indicates an (z,z,x) translation. VNT accuracy outperforms VNN-mean and
is relatively unaffected by the translation of the points. On the other hand, VNN-mean
is susceptible to translation, as can be seen in the drop at around (0.5, 0.5,0.5).

followed by a learned non-equivariant deviation. While this clever design gener-
ate a very consistent shape (consistency of 34.4/8.1 compared to our 49.9/24.3,
for planes/chairs), it comes on the expense of stability of the method (3.2/3.1
compared to ours 0.02/0.04 for planes/chairs ), as shown in Fig. [2| Tt should
also be noted that Li et al. rely on a relatively complex design of equivariant
layers, while we extend VNN, a simple equivariant architecture, which is easier
to integrate with existing pipelines for point cloud processing.

6 Additional results

6.1 Augmentations ablation

In this section we specify in more details our augmentations, which can be seen
in Fig. 3] and ablate their individual donation to the consistency of our canonical
representation. Our augmentations are Furthest point sampling (FPS), with ran-
dom number of points Nppg = U (300, 500) per batch, K-NN removal (KNN),
where a point is randomly selected on the point cloud, and its Ngnn = 100
points are removed, Gaussian Noise added to the point clouds with u = 0 and
o = 0.025, a re-sampling augmentations (Resample) where we re-select which
N = 1024 to sample from the original point cloud, and canonical rotation (Can),
where the point cloud reconstruction in its canonical representation is rotated
and transformed to create a supervised version of itself. Since our method is
pose-invariant by construction, different augmentations have no effect on the
stability, thus, we ablate only w.r.t the consistency as reported in Table [d] We
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Fig. 2. Stability of our method compared to Equi-pose. Our method (right) is fully
SE(3)-equivariant, thus changes in the orientation of the same input point cloud (Dif-
ferent columns on the left) does not change our canonic pose. Equi-pose (middle) does
not exhibit the same level of stability, as can be seen by the canonic pose changes for
different orientation of the input point cloud.

Source Noise reII)I%EJal FPS Resample

Fig. 3. Point cloud augmentations. The source point cloud on the left (blue), is mod-
ified (brown) to supervise a rotation and translation learning invariant of the shape.

ablate the donation of each augmentation by removing it from the training pro-
cess and measuring the consistency as defined in the paper. Evidently, the lesser
factor is the noise addition augmentation, while KNN and FPS donate the most
to the consistency metric.

Table 4. Consistency of different augmentations composition (lower is better). Each
column but the last represents the absence of an augmentation, indicating its impor-
tance to the consistency metric.

-FPS - Noise -KNN -Resample —Can‘ All ‘

Airplanes | 52.31  50.0 66.4 50.5 53.7 | 49.9
Chairs | 27.31 24.41 27.31 25.3 25.1 | 24.31
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6.2 Augmentations pose Invariance

In Tab. [5| we measure the median deviation in canonical pose due to the different
augmentations (measured in degrees). As can be seen the deviation for both
airplanes and chairs is lower than 3.65.

Table 5. Median deviation of canonical pose due to augmentation
FPS Noise Patch Resample

Airplanes 3.01 1.35 2.17 1.67
Chairs 3.66 1.42 238 2.09

6.3 Pose consistency

We present more canonical alignment results for point clouds and implicit func-
tion reconstruction Fig. [] Fig. [ Fig. [] Fig. [7] and Fig.

In addition, we experiment with partial dataset for shape completion derived
from ShapeNet (See Yuan et al. ”Pcn: Point completion network”). The partial
points clouds are a projection of 2.5D depth maps of the model into 3D point
clouds. The dataset contains 8 such partial point clouds per model. As can be
seen in Fig. [0 while learning a consistent canonical pose is difficult for partial
shapes, our canonical pose is reasonable and mostly consistent. Although, mis-
alignment is apparent in the consistency histogram, please note that no complete
point cloud is present in this setting, and no hyper-parameter tuning was done.

6.4 Stability

Please see the attached videos for stability visualization, divided to two sub-
folders for chairs and airplanes. In each video, we sample a single point cloud
and rotate it with multiple random rotation matrices. We feed the rotated point
cloud (see on the left of each video) through Compass, Canonical Capsules and
Our method, and show the input point cloud in canonical pose for all meth-
ods. Our method reconstruct a SE(3)-invariant canonical representation and a
SE(3)-equivariant pose estimation, thus, almost no changes are observable in the
canonical representation, while both Canonical Capsules and Compass exhibit
instability in the canonical pose estimation.
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Canonic pose

Fig. 4. More results of planes in canonic representations. The planes on the left are
randomly translated and rotated, as seen from a side view (first row) and top view
(second row). Our canonical representation, on the right, exhibit good alignment across
different instances both in orientation and position.
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Fig. 5. More results of chairs in canonic representations. The chairs on the left are
randomly translated and rotated, as seen from a side view (first row) and top view
(second row). Our canonical representation, on the right, exhibit good alignment across
different instances both in orientation and position.
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Fig. 6. More results of canonic representations for tables and cars from shapenet.
Our canonical representation, exhibit good alignment across different instances both
in orientation and position.
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Fig. 9. Consistency of the canonical pose for partial shapes of planes and chairs. While
our method is not directly optimized to achieve canonic alignment of partial shapes
due to occlusions, it has reasonable performances has can be seen in the histogram of
the first row and from samples in the second row.
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