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We provide additional implementation details and evaluations in this supplementary
material, including network architectures (Sec. A), analysis on input pose accuracy
(Sec. B), comparison between our SDF decoding based on k-NN and the closest surface
projection approach proposed in Neural Actor [3] (Sec. C), ablations on number of
used history frames (Sec. D) and vertex subsampling (Sec. E), time and memory cost
(Sec. F), an experiment for a clothed human (Sec. G), and other limitations (Sec. H
and Sec. I). Please refer to the supplementary video for qualitative comparisons and
animation results.

A Network Architectures

In our experiments, we use a UV map of resolution 256×256, T = 3, and k = 20. Before
the k-nearest neighbor (k-NN) query in Sec. 3.3, we subsample 3928 vertices by poisson-
disk sampling on the SMPL mesh, and only use these subsampled vertices for k-NN
computation. This subsampling ensures that vertices are distributed uniformly, leading
to consistent area coverage by k-NN selection (see Supp. Mat. for more discussions).
Before being fed into the UNet, L(pt+1) and {L(ṗt+i)} are compressed to 32 channels
using 1× 1 convolutions. The UNet uses convolution and transposed convolution layers
with untied biases, a kernel size of 3, no normalization, and LeakyReLU with a slope
of 0.2 as the non-linear activation, except for the last layer which uses TanH. The SDF
decoder is implemented as an MLP, which takes as input 64-dim features from the
UNet, positional encoded dj and cj up to 4-th order Fourier features. The number of
intermediate neurons in the first part of the MLP is (128, 128, 129), where the output
is split into a 128-dim feature vector and a 1-dim scalar, which is converted into non-
negative weights by softmax across the k-NN samples. After weighted average pooling,
the aggregated feature is fed into another MLP with a neuron size of (128, 128, 1) to
predict the SDF values. The MLPs use Softplus with β = 100 and a threshold of 20 as
non-linear activation except for the last layer which does not apply any activation.

B Analysis on Input Pose Accuracy

We investigate how the accuracy of the input SMPL fitting influences the results on
subject 50002 of DFaust [1]. As discussed in Sec. 4.1, the fitted SMPL parameters in
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Table A: Quantitative Evaluation on Input Pose Accuracy on Subject 50002. We show the
results of our approach and SNARF [2] using the poses provided by the AMASS [6] dataset and
the ones after refinement using all vertices in the registered meshes. While SNARF is greatly
influenced by the accuracy of pose parameters, the slight improvement in our method illustrates its
robustness to SMPL fitting errors. In addition, our approach significantly outperforms SNARF
even after pose refinement in most settings except for the 16-30 rollouts in the interpolation set.

(a) Mean Scan-to-Prediction Distance (mm) ↓

Rollout (# of frames)
1 2 4 8 16 30

Interpolation Set

AMASS [6]
SNARF [2] 7.898 7.715 7.588 7.840 7.898 8.238
Ours 1.731 2.127 2.953 4.325 5.606 6.455

Refined Poses
SNARF [2] 3.982 4.001 3.964 4.068 4.029 4.158
Ours 1.417 1.703 2.259 3.241 4.044 4.601

Extrapolation Set

AMASS [6]
SNARF [2] 8.083 8.126 8.160 8.246 8.050 8.025
Ours 1.259 1.479 1.984 2.883 4.023 4.867

Refined Poses
SNARF [2] 4.624 4.632 4.672 4.749 4.548 4.447
Ours 1.149 1.329 1.745 2.486 3.313 3.855

(b) Mean Squared Error of Volume Change ↓

Rollout (# of frames)
2 4 8 16 30

Interpolation Set

AMASS [6]
SNARF [2] 0.01623 0.01590 0.01688 0.01703 0.01829
Ours 0.00990 0.01135 0.01417 0.01597 0.01815

Refined Poses
SNARF [2] 0.01401 0.01349 0.01430 0.01426 0.01524
Ours 0.00849 0.01002 0.01248 0.01389 0.01558

Extrapolation Set

AMASS [6]
SNARF [2] 0.01228 0.01244 0.01333 0.01292 0.01264
Ours 0.00602 0.00756 0.00977 0.01082 0.01140

Refined Poses
SNARF [2] 0.01094 0.01092 0.01148 0.01099 0.01080
Ours 0.00559 0.00691 0.00871 0.00953 0.01000
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DFaust are provided by the AMASS [6] dataset that uses sparse points on the registered
data as approximated motion capture marker locations and computes the parameters
using MoSh [4]. We observe that the provided pose parameters sometimes exhibit small
misalignment with respect to the input scans. While the fitting quality in the AMASS
dataset is sufficient for our approach, we also evaluate the performance on more accurate
pose parameters by using all the vertices on the registered meshes. More specifically, we
first compute a better template by unposing the registered meshes in the first frame of
each sequence using the LBS skinning weights of the SMPL template, and averaging
over all the sequences. Using this new template, we optimize pose parameters for each
frame with an L2-loss on all the registered vertices. Note that in this experiment, we use
the original template with the refined pose parameters instead of the refined template in
order not to unfairly favor our method over SNARF [2].

In Tab. A, we report the mean absolute error of scan-to-prediction distance (mm) and
the mean squared error of volume change for our method and SNARF. Tab. A shows that
SNARF has a large error reduction with refined poses, indicating that SNARF is highly
sensitive to the accuracy of the SMPL fit. We also observe that after pose refinement,
SNARF overfits more to training poses (e.g., interpolation) as SNARF cannot model
history-dependent dynamic deformations. In contrast, our method is more robust to the
fitting errors, and significantly outperforms SNARF in most settings except for 16-30
rollouts in the interpolation set. Note that the results with longer rollouts favor “mean”
predictions over more dynamic predictions, and do not inform us of the plausibility of
the synthesized dynamics (see the discussion in Sec. 4.2).

C k-NN vs. Closest Surface Projection

As discussed in Sec. 3.3, our SDF decoding approach uses k-nearest neighbors (k-NN)
of the SMPL vertices instead of closest surface projection [3]. Fig. A illustrates the
limitation of this alternative approach proposed in Neural Actor [3]. As shown in Fig. A,
we observe that associating a query location with a single closest point on the surface
leads to poor generalization to unseen poses around regions with multiple body parts in
close proximity (e.g. around armpits). In contrast, our approach, which associates query
points with multiple k-NN vertices, produces more plausible surface geometry even for
unseen poses.

D Ablation on Number of Used History Frames

As discussed in Sec. 3, our method takes in the information of T = 3 history frames
to infer the future body shape. We provide an ablation study on the number of history
frames T used by our method. Tab. B shows that small T (T = 1, 2) lead to less accurate
predictions. We chose T = 3 for a good trade off between accuracy and computational
cost.
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OursProjectionScan OursScan Projection

Fig. A: k-NN vs. Closest Surface Projection. While the closest surface projection suffers from
artifacts around armpits, our SDF decoding based on k-NN produces more plausible surface
geometry for unseen poses.

Table B: Mean Scan-to-Prediction Distance (SPD) and Mean Squared Error of Volume
Change (VC) on DFaust 50002 Subject.

T=1 T=2 T=3 T=4
SPD (Rollout=1) 1.671 1.437 1.415 1.427
VC (Rollout=2) 0.00808 0.00738 0.00732 0.00710

E Vertex Subsampling for k-NN Query

As discussed in Sec. 3.4, we subsample 3928 vertices by poisson-disk sampling on the
SMPL mesh for k-nearest neighbor (k-NN) computation, to ensure uniformly distributed
vertices and consistent area coverage by k-NN selection. In fact, when using all SMPL
vertices, we sometimes observe artifacts around joints where vertex density tends to be
non-uniform, such as the elbow in Fig. B. If we further reduce vertices to one half (from
3928 to 1649), the errors increase from 1.415 / 0.00732 (SPD / VC) to 1.517 / 0.00772.

F Time and Memory Cost

Our method takes ∼ 2.1s and ∼ 4.7GB memory on the GPU to infer one frame, with
one RTX A5000 and one i9-10920X.

G Limitation: Clothing Deformations

We also apply our method on the CAPE [5] dataset that contains 4D scans of clothed
humans. We select the subject 03375 longlong, which exhibits the most visible
dynamic deformations for clothing. We exclude 6 sequences (athletics, frisbee,
volleyball, box trial1, swim trial1, twist tilt trial1) from train-
ing, and use them for testing. We employ as input the template and SMPL poses provided



AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling 5

Fig. B: Removing vertex subsampling results in artifacts around the elbow.

by the CAPE dataset for training our model. Note that we approximate raw scans by
sampling point clouds with surface normals computed on the registered meshes as the
CAPE dataset only provides registered meshes for 03375 longlong.

Please refer to the supplementary video for qualitative results. While our approach
produces plausible short-term clothing deformations, it remains challenging to model
dynamically deforming clothing with longer rollouts. Compared to soft-tissue deforma-
tions, dynamics on clothed humans involve high-frequency deformations and topology
change, making the learning of clothing dynamics more difficult. We leave this for future
work.

H Limitation: Lack of hand details

The input raw scans provided by DFaust dataset are often incomplete and noisy around
hand regions (see Fig. C and Fig. 1 in the main paper). While the proposed shape learning
method allows us to fill missing regions across frames, highly corrupted or unobserved
regions throughout the sequences remain challenging to recover. How to hallucinate
missing information from a generic body prior could be an interesting direction for
future works.

I Limitation: Artifacts around stomach

In the supplemental video, we can occasionally observe relatively large artifacts when
the hand is close to the stomach (3:15, 3:56 and 6:27). The artifacts are caused by an
infeasible body state of the arm penetrating inside the body. We attribute this to naively
transferring pose parameters between source and target, whose body shapes are largely
deviated (the source is skinny, whereas the target is plump). How to correct poses based
on body shape could be an interesting problem for future works.
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Fig. C: Noisy and incomplete hands in training data.
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