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A More Details Regarding Experimental Comparisons Performed

Our proposed self-supervised algorithm is designed to take a monocular video as input and output a light-field
(LF) video sequence. We evaluate our algorithm against other state-of-the-art supervised monocular LF estimation
algorithms [1, 2, 3]. For Li et al. [1], we use their publicly available implementation to make our comparisons. To
obtain the complete LF video from [1], we have to reconstruct each frame of the video individually. Li et al. +
Ranftl et al. represents a modified version of [1], where we input a depth estimate from DPT [4] instead of the
original DeepLens [5] model. Since [1] is not trained on depth inputs from DPT [4], we finetune [1] on the TAMULF
dataset with depth maps obtained from DPT [4]. For finetuning, we use AdamW optimizer for 5 epochs, with an
initial learning rate of 2× 10−5 and a weight decay of 0.001. While [2] is originally trained on a dataset of flower
images (proposed in the same work), we finetune it on a larger and diverse TAMULF dataset from [1]. This is done
because the test data has much more diverse inputs than the images in the original flowers dataset. The network
is finetuned in Tensorflow using Adam optimizer for 80k iterations with a learning rate of 10−4.

In Tab. 1 of main, we perform quantitative comparisons of various algorithms against 4 datasets: Hybrid,
ViewSynth, TAMULF and Stanford. From the Hybrid dataset we consider the central 7× 7 views as the ground-
truth light field videos, and the center-view of each LF forms the input monocular video. The rest three datasets
are LF image datasets, and we simulate LF videos with 8 frames from each LF following the procedure described
in [6, 7].

In case of Hybrid, we use the test sequences from the dataset. For ViewSynth datasets, we choose the synthesized
video sequences from the default test set. For TAMULF dataset, we randomly chose 84 samples from 1084 light
field frames, and these frames are used to synthesize videos which are used for testing the algorithms. The Stanford
dataset contains 4211 light fields organised into 30 categories. Each scene is captured from 3, 4 or 5 different camera
poses, over a total of 850 scenes. We randomly select 113 light fields frames from Tree category to synthesize videos
which was used as the test set.

B Details of our Proposed Network architecture

Light field synthesis network, V The synthesis network V is a long short term memory (LSTM) based
recurrent neural network consisting of a Efficient-Net encoder [8] and a convolutional decoder with skip connections
as shown in Fig. A1. The LSTM layer follows the Efficient-Net encoder and the cell output from the LSTM layer
is fed as input to the decoder network. The decoder network consists of 4 upsampling blocks. In the upsampling
block, the feature maps are first doubled in size spatially using bilinear interpolation. The upsampled feature map
is then fed to a series of two convolutional layers of filter size 3× 3, which is then followed by batch normalization.
The output of the final upsampling block is then input to a final convolutional layer which outputs 36 RGB (108)
channels. These 108 channels correspond to the N = 3 layers and R = 12 rank of the low-rank LF representation
F .

The displacements D = {D1, D2, D3} for the Adaptive TD layer are predicted from mini-vision transformer
(m-VIT)[9] network that takes as input {It−1,It,It+1,dt}. The m-VIT network used in our work is exactly the
same as the one proposed in [9]. Except that in our implementation we stack successive frames and disparity
map as input (10 channels) and provide it as input to m-VIT. The output of this network is a sequence of values
D = {D1, D2, D3} which is used to predict the LF frame.

Supervised residual refinement module Vision Transformers(ViT) [10] form the backbone of our proposed
refinement module. We divide the predicted LF frame L̂t into non-overlapping patches, each of size p×p (= 32×32).
A shallow ResNet-based encoder (see Fig. A2) extracts features independently from each of the U2(= 49) patches.
The encoder contains 12 bottleneck blocks [11] with max-pooling operation carried out at the first of every three
blocks as shown in Fig. A2. The obtained feature embeddings are input to two transformer layers which applied
multi-headed self-attention (MHSA) to these tokens. Here, P (= 6) is the number of non-overlapping patches
cropped from each angular view. These P tokens are stacked horizontally and vertically following the order of
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Figure A1: We show the detailed network architecture of the LF synthesis network V that predicts the low-rank
representation F . For estimation of the low-rank LF representation, we use a encoder-decoder based network with
ConvLSTM module used for learning temporal information. The encoder block follows the Efficient-Net[8] architec-
ture and the decoder consists of bilinear interpolation operation followed by convolution and batch-normalization
operation.

cropped patches, so as to form a larger feature map. A shallow decoder network then takes these stacked tokens
as input and predicts a 4 channel output. The shallow network consists of 4 upsample blocks where each block has
the exact same configuration followed in LF synthesis network, V .
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Figure A2: We show the detailed architecture of the supervised Refinement module in our proposed algorithm (see
Fig. 5 of main). It takes as input the spatial patches cropped from each LF sub-aperture image (SAI) and produces
a feature map for independently for each patch. The ‘Bottleneck block’ used here is identical to the ResNet-based
bottleneck block proposed in [11]. The output features from encoder are then flattened and passed through a MLP
layer to get the feature embeddings. The transformer layer performs multi-headed self-attention (MHSA) on the
embeddings and outputs tokens which are then reassembled spatially to form larger feature maps (see Sec. 3.5 of
main). These feature maps are input to the decoder block identical to the decoder block in V . The refined LF and
mask are obtained as outputs from the decoder block.

C Ablation on pre-trained optical flow and depth estimation networks

Our proposed self-supervised algorithm aims to synthesize LF video sequence from monocular video by enforcing
geometric consistency via relative depth map, temporal consistency and dis-occlusion handling via optical flow.
For this purpose, we use a pre-trained DPT[4] network to estimate the relative depth map from monocular frame
and pre-trained RAFT[12] network to estimate the optical flow between successive input video frames. Since the
performance of our proposed methods depends highly on the pre-trained depth and optical flow network, we
compare the effect on performance by replacing DPT and RAFT models with DeepLens[5] and LiteFlowNet[13]
models for relative depth and optical flow estimation. As shown in Tab. A1, when the DPT and/or RAFT models
are replaced with DeepLens and LiteFlowNet respectively, we observe a decline in the performance of the LF
synthesis network, V , as evidenced by the reduction in PSNR and SSIM scores. From this we conclude that the
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Model Depth Flow Refine
Average

PSNR SSIM
V1 DPT RAFT ✗ 31.09 0.949
V2 DPT RAFT ✔ 31.47 0.951
V3 Deeplens RAFT ✗ 30.53 0.945
V4 Deeplens RAFT ✔ 30.76 0.946
V5 DPT LiteFlow ✗ 29.60 0.949
V6 DPT LiteFlow ✔ 31.27 0.950
V7 Deeplens LiteFlow ✗ 29.01 0.941
V8 Deeplens LiteFlow ✔ 29.59 0.941

Table A1: Effect of depth and optical flow accuracy on our proposed method: Accurate depth and
optical flow estimates are necessary to enforce the geometric and temporal consistency on the predicted LF video.
Estimated optical flow is also used to handle disoccluded pixels in the LF. Hence, we compare the effect of
replacing these state-of-the-art models (DPT and RAFT) with slightly less accurate models (DeepLens[5] and
LiteFlowNet[13]). We observe that using less accurate depth and optical flow estimates causes our reconstruction
results to degrade. And this degradation is more pronounced when we don’t use the proposed supervised refinement
module. This also points to the conclusion that our proposed model is indeed utilizing the information from the
depth and optical flow estimates. Also, our proposed supervised refinement module tries to correct these errors
using the available ground-truth data.

proposed self-supervised algorithm indeed utilizes the information from the relative depth map and optical flow
map and the quality of these estimates affect the performance of the LF synthesis network, V . Also, our proposed
supervised refinement module tries to correct these errors using the available ground-truth data, irrespective of
the relative depth and optical flow networks, resulting in similar quality LF estimates after refinement.

D Temporal consistency of synthesized LF video sequence

Our proposed algorithm aims to reconstruct LF video sequences where temporal consistency is a crucial factor. We
evaluate and quantitatively compare the temporal consistency of the videos predicted from our proposed algorithm.
For evaluating temporal consistency between successive predicted LF frames, we first predict optical flow via [12]
between all SAIs of successive ground-truth LF frames, i.e., Lt, Lt−1. The current estimated LF is then warped to
the previous LF frame using the estimated ground-truth optical flow. We then compute the mean squared error
between the previous estimated LF and the current LF warped to the previous LF. The warping error is used
as a measure of temporal stability between successive predicted LF frames. We calculate the temporal stability
function (lower is better) as

Etemp(L̂t;Lt,Lt−1) =
∑
u

∥W
(
L̂t (u) ;O(Lt (u) ,Lt−1 (u))

)
− Lt−1∥2 (A1)

To estimate the temporal stability of the network for a video, the Etemp function is then averaged over the
entire video. In table Tab. A2, we compare two of our models, ‘Base+occ+adpt’ (without refinement block)
and ‘Proposed’ (with refinement block), with previous learning-based techniques. We observe that our proposed
algorithm performs significantly better than previous state-of-the-art techniques for LF estimation. Although
the ‘Proposed’ model is trained on images without the temporal consistency constraint, its performance does
not degrade compared to ‘Base+occ+adpt’ model which is trained on monocular videos with explicit temporal
consistency loss.

E Identified depth planes for adaptive tensor-display model

We propose an adaptive tensor-display based low rank representation for estimating LF from the given input frames.
Here, we showcase how the distance values D = {D1, D2, D3} adapt to the varying input depth maps, thereby
providing superior reconstruction results than that of the standard tensor-display based low-rank representation.
In Fig. A3, we show various LF images predicted by different scaled versions of the disparity map. Specifically,
we scale the input disparity map by the factors 1 and 2 and predict the corresponding LF. We observe that the
predicted depth planes adapt to the input disparity maps providing superior reconstruction results.
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Algorithm Hybrid ViewSynth TAMULF Stanford Average
Niklaus 0.357 0.070 0.219 0.065 0.177
Srinivasan 0.195 0.020 0.070 0.014 0.075
Li 0.108 0.019 0.034 0.009 0.043
Li+Ranftl 0.108 0.016 0.033 0.008 0.042
Base+occ+adpt 0.103 0.017 0.028 0.006 0.038
Proposed 0.102 0.016 0.027 0.006 0.038

Table A2: Evaluating temporal consistency: We quantitatively compare the temporal consistency of the
predicted LF videos through checking the consistency with the optical flow. Our proposed algorithm performs
significantly better than previous state-of-the-art techniques for LF estimation. Although the refinement block
of the ‘Proposed’ model is trained on images without the temporal consistency constraint, its performance does
not degrade compared to ‘Base+occ+adpt’ model which is trained on monocular videos with explicit temporal
consistency loss. Blue and green represent the top-two performing algorithm in each column.

F Application to video refocusing

LF have been popular because they provide a very intuitive way of doing post-capture focus control. The amount
of defocus that can be achieved depends on the baseline of the LF. As demonstrated in Sec. 4.3, our technique is
not limited to a single baseline. Unlike previous LF prediction techniques, a single model can output LF frames
with multiple baselines. And this can be controlled by simply increasing/decreasing the scale factor used to convert
a relative depth map to disparity map. As shown in Fig. A4, this can be used to control the level of blur in the
defocused region. In a typical LF camera, post-capture aperture control can be used to only reduce the blur size
from a maximum position. Here, by predicting a LF with a larger baseline, we can also increase the defocus blur.
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Figure A3: Adaptive vs. vanilla tensor-display representation for LFs: We show four different samples with
EPIs for LF predicted by 1× and 2× scaled disparity inputs. Besides each figure we also show the distribution of
disparity values in the 1× and 2× scaled disparity maps (shown as blue curve). In these graphs we also represent
the disparity planes in the standard and adaptive TD models with green and orange bars respectively. We observe
that the green bars remain constant (at −1, 0,+1) even when the disparity gets scaled. While the predicted orange
bars adapt to the input scaled disparity maps thereby providing a more accurate representation of the LF. We
also notice that the 3 orange bars are not necessarily uniformly distant from each other. Refer to supplementary
video file for video results.
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Figure A4: As our model can output LFs with varying baselines, we can demonstrate refocusing effects with varying
blur sizes. As can be seen, the blur size in a large baseline LF is bigger than the one in a small baseline LF.
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