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1 Forward Model Derivation

In this section, we elaborate on the derivation of exitant Stokes vector as a
function of diffuse and specular radiance as described in Eq. 3 of the main
manuscript.

Diffuse Component In Eq. 2, we decompose the outgoing Stokes vector into
diffuse and specular components. First we focus on the diffuse component. From
the definition of Hd for pBRDF model [4] and the illumination Stokes vector
defined in eq. 1, we obtain
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where ρ is the diffuse albedo, n is the surface normal and i is the incident
illumination direction. With ϕn denoting the exitant azimuth angle w.r.t. the
surface normal, we define αo and δo as

αo = cos (2ϕn)

δo = sin (2ϕn)
(2)

We denote the term ρ(n · i)LiT
+
i T+ as the diffuse intensity LD. The term Hd ·Si

is independent of the viewing direction. Thus we obtain the first component of
Eq.3 ∫
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Specular Component The specular exitant Stokes vector is obtained by substi-
tution of Hs as defined in the pBRDF model [4] and Si from eq. 1.

Hs · Si = Li
ksDG

4(n ·o)
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where ks is the specular coefficient, o is the exitant direction, D is the microfacet
distribution and G is the microfacet shadowing term. With φh and φh denoting
the incident and exitant azimuth angle w.r.t. the half angle h respectively, we
define χo and γo as

χh = sin (2φh)

γh = cos (2φh)
(5)

We denote fs =
ksDGR+

4(n ·o)
. Theoretically χ and γ, depend on the half angles and

not the geometric surface normals of the object. In practice, we observe that for
realistic values of the roughness, χ and γ do not significantly deviate from the
value obtained using surface normals instead of the half angle,i.e. χh ≈ sin (2ϕh)
and γh ≈ cos (2ϕn). As a resultm

∫
(Hs · Si)di = Li

ksDG

4(n ·o)
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R−χo
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∫
fsLidi. (6)

We denote R+
∫
fsLidi as the specular radiance Ls and obtain the specular

component of the output Stokes vector

2 Implementation Details

Fig. 1: Experimental Setup: Above, is an image of our experimental setup.
The target object is placed on the stationary section of a rotation stage, which
is attached to an extended arm and the snapshot polarimetric camera. The
camera capture polarimetric images from multiple angles under unstructured
lighting while the target object remains still.

Real world data was captured with a Blackfly S USB3 camera with Sony
IMX250MYR Polarization-RGB sensor [1]. 35 images were captured for the Ball-
Cup, Owl and Gnome objects under different lighting conditions as described in
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Table 2. The camera was placed along multiple angles distributed roughly equally
along a circle around the target object using a portable setup as shown in Fig.
1. To capture the ground truth illumination map as shown in Fig. 4 last row, we
use the same setup and flip the camera so that it points outside instead of the
scene. Fish eye lens is used to increase the field of view and multi-view images
are captured and stitched together to obtain the ground truth illumination map.

Rendering data generation Simulated data is generated using the Mitsuba2 ren-
derer [7]. In Mitsuba2, we are able to set the material properties, camera angles,
illumination, and imaging modality (polarized or unpolarized). We use a brdf
that possesses equally weighted diffuse and dielectric (specular) components. We
use 45 camera views distributed over all azimuth angles, and range from 25 to
50 degrees in elevation. Our two ground truth targets were a standard sphere
and a bust shape obtained from [8]. The camera views are shown in Fig. 2.

Fig. 2: Camera Views Above, we show the camera positions for both the sim-
ulated and experimentally captured data.

Training details All training and testing was conducted on a server containing
Nvidia 2080 Ti’s. As stated in our main body, our DiffNet, MaskNet, Rough-
Net, and IllumNet were standard MLPs with 4 layers and a width of 512. Our
SDFNet was an 8-layer MLP with a width of 256 and a single skip connec-
tion in the 4-th layer. For the Stokes loss, Lstokes, we chose L1 norm instead of
L2 norm as the captured images have sharp intensity variations and L2 norm
could result in smoothing of these features [2].Our training procedure uses sev-
eral hyperparameters. The most relevant parameters include the weightage of
the stokes vector loss, the weight of the mask network loss, the number of warm
up iterations (before the stokes vector and specular components are estimated),
and the total number of iterations. For real-world data we use 1000 warm-up
iterations and 100,000 total iterations, while for simulated data we use 1500
warm-up iterations and 50,000 total iterations. We empirically found that a
mask loss weightage and stokes loss weightage, ws of 1.0 and 0.1, respectively,
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produced high-quality results. We observe a trade-off in deciding the optimal
value of ws. If ws is too small, the polarimetric cues are neglected resulting in
artefacts along specular highlights. If ws is too high, the Stokes components
s2 and s3 get higher weightage than s0. s2 and s3 can be noisy for unpolar-
ized regions resulting in noisy reconstructions for large values of ws. The diffuse
and mask networks used a sigmoid activation function, while the specular and
roughness networks used a softplus activation function to avoid vanishing gradi-
ents. Finally, for our SDFNet, MaskNet, RoughNet, and IllumNet, we used the
frequency embeddings described by Mildenhall et al [6]. The frequencies of the
embeddings were sampled in log-space from 20 − 26 for the SDFNet and from
20 − 210 for the MaskNet, RoughNet, and DiffNet. The integrated directional
embeddings were used to embed the directional coordinates for the IllumNet, as
described in more detail in the subsequent section.
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Fig. 3: Illumination Network Design: The illumination network accepts the
reflected direction vector and the predicted surface roughness as input. The
reflected direction is calculated from the surface normal and viewing direction
as shown above. The roughness and direction vector are encoded by the IDE
before it is passed to the MLP which generates the predicted illumination and
radiance based on fresnel reflectance.

Illumination Network Design The illumination network is responsible for calcu-
lating the incident illumination (the environment map) and the specular radi-
ance, which is derived from Fresnel reflectance. To do this, the network accepts
the reflected direction and the roughness as input. The roughness parameter is
estimated by a separate network, while the reflected direction can be calculated
from the predicted surface normals (using the geometry network) and the input
viewing direction. Both inputs must be encoded through the IDE to help esti-
mate the high frequency information and incorporate the effects of the roughness
parameter, i.e. increase the blurring of the predicted illumination as the rough-
ness gets larger. For the input to our IllumNet, we used degree L ∈ {1, 2, 4}
spherical harmonics with order m ∈ [−L,L] for the IDE’s.
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3 Additional Results

Scene Approach
Diffuse Specular Mixed Normals

PSNR SSIM PSNR SSIM PSNR SSIM MAE
↑ (dB) ↑ ↑ (dB) ↑ ↑ (dB) ↑ ↓ (◦)

B
u
st

NeuralPIL 23.90 0.87 18.04 0.87 26.71 0.87 15.36
PhySG 22.64 0.94 23.00 0.94 19.94 0.72 9.81
Ours no pol no Illum 28.29 0.968 21.13 0.906 22.29 0.951 7.89
Ours no pol 25.78 0.956 18.23 0.856 22.50 0.927 4.83
Ours 29.53 0.973 23.63 0.912 25.97 0.951 1.95

S
p
h
er
e NeuralPIL 13.09 0.55 12.92 0.55 20.04 0.66 38.73

PhySG 21.76 0.76 18.90 0.76 17.93 0.70 8.42
Ours no pol no Illum 20.65 0.76 16.23 0.76 17.11 0.72 1.91
Ours no pol 22.20 0.83 21.30 0.87 20.87 0.82 1.92
Ours 24.29 0.84 21.29 0.88 21.29 0.83 1.04

Table 1: Quantiative evaluation on rendered scenes We evaluate PAN-
DORA with state-of-the-art and ablation methods on held-out testsets of 45
images for two rendered scenes. We report the peak average signal-to-noise ratio
(PSNR) and structured similarity (SSIM) of diffuse, specular and net radiance
and mean angular error (MAE) of surface normals. PANDORA consistently out-
performs state-of-the-art in radiance separation and geometry estimation.

In Fig. 4, we show additional qualitative comparisons with state-of-the-art in-
verse rendering technique, PhySG [10], and ablation model run on intensity-only
images. In Fig. 5, we highlight the advantages of PANDORA over existing mesh
optimization-based polarimetric inverse rendering technique, PMVIR [11]. We
also report additional quantitative metrics on simulated and real data in Table
1 and Table 2 respectively. Please refer to the supplementary html file for videos
showcasing our multi-view renderings.

4 Analysis

Performance on out-of-distribution views As expected, for regions outside of the
views in our training images, the estimation performs poorly. We see in Fig. 6
the network extrapolates a blob above the statue, in regions that are not heavily
sampled during training. This affects our rendering when we sample rays in
these regions (Fig. 6 panel 4). Finally, we see that by sampling rays only within
a narrower region of interest, corresponding to locations with more training
views, we obtain a correct estimate. We should note that in our main paper, the
reported metrics do not account for this poor extrapolation as the images were
rendered over a wider region of interest. So, the metrics were affected by artefacts
in some of the rendered images shown in Fig. 6 panel 4. Metrics reported in Table
1 are with images rendered over smaller region of interest and do not have this
artefact.

Effect of roughness on illumination estimation Above, we show the effects of
the surface roughness on the estimated illumination map. As the surface rough-
ness (α) increases, the associated, estimated environment map is increasingly
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Fig. 4: Reflectance separation,surface normal reconstruction and illu-
mination estimatoin on real dataset PANDORA captures high frequency
details in the surface normals and accurately models the specular highlights.
Please view the supplementary html file for multi-view renderings of the same.
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Ball-Cup Owl Gnome

Lab Hallway

Scene Lighting
PhySG Ours w\o pol Ours

PSNR SSIM PSNR SSIM PSNR SSIM
↑ (dB) ↑ ↑ (dB) ↑ ↑ (dB) ↑

Owl Hallway 27.68 0.953 27.67 0.940 30.37 0.960

Gnome Hallway 30.31 0.986 28.42 0.984 29.15 0.984

Ball-cup Hallway 19.46 0.920 27.99 0.980 28.12 0.981

Ball-cup Lab 14.00 0.950 23.52 0.953 26.92 0.970

Table 2:Quantiative evaluation on real scenesWe report the average PSNR
and SSIM of the rendered intensity image over the training set for objects with
different material properties and under different lighting conditions. PANDORA
consistently outperforms PhySG and the ablation model that is devoid of the
polarimetric cues.
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Fig. 5: Comparison with prior mesh-based polarimetric inverse render-
ing on real data Utilizing similar multi-view snapshot polarimetric data as
ours, PMVIR [11] recovers 3D mesh, diffuse color for mesh vertex and lighting
based on diffuse shading. Neural implicit representations enable PANDORA to
extract more from the same captured data. PANDORA learns the continous
signed distance field from which mesh and surface normals can be extracted.
Apart from the diffuse color, PANDORA also outputs the specular radiance.
Illumination estimated from PANDORA features sharp light source and the or-
ange floor that better explain the captured data.

blurred. The inset images show the ground truth specular reflection for each of
the estimated environment maps. On the right-hand side, we show the associated
spherical harmonic bases, which are used for the integrated directional encoding
(IDE) 1 [9]. Recall that the IDE is used to encode the directional coordinates,
which are passed as input to the illumination MLP. Increasing roughness de-
creases the impact of the higher frequency spherical harmonic bases, as shown
on the right. This helps to supervise the desired blurring effect because the
high-frequency components reduced.

1 The IDE visualization was generated using the ReF-NeRF implementation, with
help in implementing the spherical harmonics transform from [3, 5]
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Fig. 6: Extrapolated Views Result: We show the estimated mesh correspond-
ing to regions that had lower sampled (panel 1). and higher sampled (panel 2)
views. In addition, we show the resulting renderings when using more extrapo-
lated rays (panel 4) versus without the extrapolated rays (panel 5).

Effect of roughness on polarimetric cues. In Fig. 8, we show using renderings
from Mitsuba that the variation of polarimetric cues on varying roughness is less
and the polarization of specular component is always distinct from the diffuse
polarization under different levels of roughness.

5 Limitations

There are two main limitations to our current approach. Firstly, our method
does not handle self-occlusions. This is more prominent in our simulated bust
target, since the target geometry is not fully convex. We see dark patches in
the estimated illumination map where the network cannot correctly estimate
the illumination due to self-occlusions. In future work, this limitation may be
resolved using a similar method as Verbin et al [9], in which a learnable “bot-
tleneck” vector is used to model the target features that are not explained by
other parts of the network.

Secondly, our method is that it is not able to perform re-lighting. While
PANDORA is able to perform diffuse-specular radiance separation, the inci-
dent illumination is baked into these radiances and it is chalenging to estimate
physically-based material properties, more specifically the material roughness
and the diffuse albedo. While our network architecture possesses an α param-
eter that tunes the roughness appearance and models the effect of increasing
roughness, such as blurred illumination map (Fig. 7), it does not truly estimate
the physics-based roughness parameter.
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Fig. 7: Effect of roughness on illumination estimation: Our illumination
estimation accounts for the effects of surface roughness. As the roughness (pa-
rameterized by α) increases, there is an increasing blurring effect on the es-
timated environment map. The inset images shows the corresponding ground
truth specular reflection as the surface roughness increases. The right side shows
the effect of the increasing roughness on the spherical harmonic IDE’s.
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Fig. 8: Effect of specular roughness on polarimetric cues We render po-
larimetric cues for a sphere object using the pBRDF model in Mitsuba2 with
varying material properties. The variation of polarimetric cues is less under the
realistic range of roughness. Our insight that the specular polarization is or-
thogonal in angle and higher in degree than the diffuse polarization remains
applicable on varying specular roughness to realistic values. alpha denotes the
roughness parameter of the Beckmann microfacet distribution.
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