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1 Training Methodology

1.1 Surrogate-gradient based learning

To train deep SNNs, surrogate-gradient based backpropagation through time
(BPTT) [12] is used to perform temporal as well as spatial error credit assign-
ment. Spatial credit assignment is achieved by spatial error distribution across
layers, while the network is unrolled in time for temporal credit assignment. The
output layer neuronal dynamics is governed by-

ut
i = ut−1

i +
∑
j

wijo
t
j , (1)

here ui corresponds to the membrane potential of i-th neuron of final (L-th) layer.
The final layer neurons just accumulate the potential over time for classification
purpose, without emitting spikes. We pass these accumulated final layer outputs
through a softmax layer which gives the class-wise probability distribution and
then the loss is calculated using the cross-entropy between the true output and
the network’s predicted distribution. The governing equations are-

Loss = −
∑
i

yilog(si), (2)

si =
eu

T
i∑N

k=1 e
uT
k

, (3)

where Loss represents the loss function, y denotes true label, s is the predicted
label, T is the total number of timesteps and N is the number of classes. The
derivative of the loss w.r.t. the membrane potential of the neurons in the final
layer is-

∂Loss

∂uT
L

= s− y, (4)

and the weight updates at the output layer are done as-

wij,L = wij,L − η∆wij,L, (5)
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∆wij,L =
∑
t

∂Loss

∂wt
ij,L

=
∑
t

∂Loss

∂uT
L

∂uT
L

∂wt
ij,L

=
∂Loss

∂uT
L

∑
t

∂uT
L

∂wt
ij,L

,

(6)

where η is the learning rate, and wt
ij,L denotes the weight between i-th neuron

at layer L and j-th neuron at layer L − 1 at timestep t. Output layer neurons
are non-spiking, hence the non-differentiability issue is not involved here. The
hidden layer parameter update is given by-

∆wij,k =
∑
t

∂Loss

∂wt
ij,k

=
∑
t

∂Loss

∂oti,k

∂oti,k
∂ut

i,k

∂ut
i,k

∂wt
ij,k

, k = 2, 3, ...L− 1 (7)

where oti,k is the spike-generating function (Eqn. 3), k is layer index. We approx-
imate the gradient of this function w.r.t. its input using the linear surrogate-
gradient [1] as-

∂o

∂u
= γmax{0, 1− |u− v

v
|}, (8)

where γ is a hyperparameter chosen as 0.3 in this work. The layerwise threshold
is updated using-

vl = vl − η∆vl, (9)

∆vl =
∑
t

∂Loss

∂vl
=

∑
t

∂Loss

∂ot
l

∂ot
l

∂zt
l

∂zt
l

∂vl

=
∑
t

∂Loss

∂ot
l

∂ot
l

∂zt
l

(
−vlo

t−1
l − ut

l

v2l

) (10)

and during training stages where more than one timestep is involved, the leak
is updated as-

λl = λl − η∆λl, and∆λl =
∑
t

∂Loss

∂λl
=

∑
t

∂Loss

∂ot
l

∂ot
l

∂ut
l

∂ut
l

∂λl

=
∑
t

∂Loss

∂ot
l

∂ot
l

∂ut
l

ut−1
l

(11)
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Algorithm S1 Procedure of spike-based learning with backpropagation for an
iteration.

Input: pixel-based mini-batch of input (X) - target (Y ) pairs, total number of
timesteps (T ), number of layers (L), pre-trained ANN weights (W ), membrane po-
tential (U), layer-wise membrane leak constants (λ), layer-wise firing thresholds (V ),
learning rate (η)
Initialize: U t

l = 0, ∀l = 1, ..., L
// Forward Phase
for t← 1 to T do

Ot
1 = X;

for l← 2 to L− 1 do
// membrane potential integrates weighted sum of spike-inputs
U t

l = λlU
t−1
l +Wl ∗Ot

l−1

if U t
l > Vl then

// if membrane potential exceeds Vl, a neuron fires a spike
Ot

l = 1, U t
l = U t

l − Vl

else
// else, output is zero
Ot

l = 0
end if

end for
// final layer neurons do not fire
U t

L = U t−1
L +WL ∗Ot

L−1

end for
//calculate loss, Loss=cross-entropy(UT

L ,Y )
// Backward Phase
for t← T to 1 do

for l← L− 1 to 1 do
// evaluate partial derivatives of loss with respect to the trainable parameters
by unrolling the network over time

△W t
l = ∂Loss

∂Ot
l

∂Ot
l

∂Ut
l

∂Ut
l

∂W t
l
, ∆V t

l = ∂Loss
∂Ot

l

∂Ot
l

∂zt
l

∂zt
l

∂Vl
, ∆λt

l =
∂Loss
∂ot

l

∂ot
l

∂ut
l

∂ut
l

∂λl

end for
end for
//update the parameters Wl = Wl − η

∑
t ∆W t

l , Vl = Vl − η
∑

t ∆V t
l , λl = λl −

η
∑

t ∆λt
l

2 Experimental details

2.1 Network architecture

We modify the VGG and ResNet architectures slightly to facilitate ANN-SNN
conversion. 3 plain convolutional layers of 64 filters are appended after the input
layer in the ResNet architecture [9]. In all cases, average pooling (2×2) is used
and the basic block in ResNet employs a stride of 2 when the number of filters
increases. 1×1 convolution is used in the shortcut path of basic blocks where the
number of filters is different in input and output. The architectural details are-

VGG6: {64, A, 128, 128, A}, Linear
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VGG16: {64, D, 64, A, 128, D, 128, A, 256, D, 256, D, 256, A, 512, D, 512,
D, 512, A, 512, D, 512, D, 512}, Linear

ResNet20: {64, D, 64, D, 64, A, 64BB, 64BB, 128BB (/2), 128BB, 256BB
(/2), 256BB, 512BB (/2), 512BB}

BB: basic block, Linear: {4096, D, 4096, D, number of classes}, D: Dropout
(probability (p)-ANN: 0.5, SNN: 0.2), A: Average Pooling (kernel size = 2× 2)

2.2 Training Hyperparameters

Standard data augmentation techniques are applied for image datasets such as
padding by 4 pixels on each side, and 32 × 32 cropping by randomly sampling
from the padded image or its horizontally flipped version (with 0.5 probability
of flipping). The original 32× 32 images are used during testing. Both training
and testing data are normalized using channel-wise mean and standard devia-
tion calculated from training set. The ANNs are trained with cross-entropy loss
with stochastic gradient descent optimization (weight decay=0.0005, momen-
tum=0.9). We train the ANNs for 500 and 90 epochs for CIFAR and ImageNet
respectively, with an initial learning rate of 0.01. The learning rate is divided by
5 at epochs of 0.45, 0.7 and 0.9 fraction of total epochs. The ANNs are trained
with batch-norm (BN) and the BN parameters are fused with the layerwise
weights during ANN-SNN conversion following [8], we do not have bias terms as
BN is used. Additionally, dropout [10] is used as the regularizer with a constant
dropout mask with dropout probability=0.5 across all timesteps while training
the SNNs. Since max-pooling causes significant information loss in SNNs [2], we
use average-pooling layers to reduce the feature maps. During ANN training,
the weights are initialized using He initialization [3]. Upon conversion, at each
training iteration with a certain timestep, the SNNs are trained for 300 epochs
with cross-entropy loss and adam optimizer (weight decay=0). Initial learning
rate is chosen as 0.0001, which is divided by 5 at epochs of 0.6, 0.8 and 0.9
fraction of total epochs. While training the SNNs, dropout probability is kept
at 0.2.

3 Comparison of accuracy versus latency trade-off with
various encoding methods

In this part, we compare our results with various SNN encoding schemes in terms
of timesteps required to reach convergence for a VGG16 network and the results
are shown in Fig. 1. The figure demonstrates the results of “T2FSNN” encoding
[7], where the timing of spikes carries information and other rate and temporal
coding schemes including “Rate” [8], “Phase” [4], and “Burst” coding [6]. The left
plot in Fig. 1 shows ∼ 200 timesteps is needed for the fastest convergence among
these encoding methods for CIFAR10, whereas, we achieve 93.05% accuracy
in just 1 timestep. Similarly, we obtain 70.15% accuracy in 1 timestep with
VGG16 on CIFAR100. The graph on the right in Fig. 1 shows the results for
VGG16 on CIFAR100 using “T2FSNN”, “Burst”, “Phase” and “Rate”. As can
be seen, “T2FSNN” reaches 68% roughly at 500 steps, “Burst” at 1500, “Phase”
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Fig. 1. Accuracy versus latency curve for various SNN coding methods on VGG16, the
values for TTFS [7], phase [4], burst [6] and rate [8] have been adopted from [7].

.

at 2000, and “Rate” fails to cross 60% even at 3000 timesteps. Notably, we are
not only able to reduce latency by 2 to 3 orders of magnitude compared to
these works, but also outperform them in top-1 accuracy by ∼ 2% using unit
inference latency. So, T1 SNN enhances the performance on both ends of the
accuracy-latency trade-off compared to these other approaches. Moreover, while
the temporal methods enhance computational efficiency by reducing the spike
count, the high latency issue persists which incurs high memory access overhead
due to the requirement of fetching membrane potential of each neuron at every
timestep. Since our proposed scheme enables one step inference, the neurons
are automatically limited to maximum one spike per neuron like “T2FSNN”
[7], but our inference latency is significantly lower and no extra memory access
operations are involved for fetching membrane potentials of previous timesteps.

4 Computational Cost

The number of operations in an ANN layer is given as-

#ANNops =

kw × kh × cin × hout × wout × cout,
Conv layer

nin × nout, Linear layer

where kw(kh) denote filter width (height), cin(cout) is number of input (out-
put) channels, hout(wout) is the height (width) of the output feature map, and
nin(nout) is the number of input (output) nodes.

5 Additional Results on Static Image Classification

Is training following direct conversion from ANN with T1 thresholds
feasible? Though the extra training overhead in our method does not affect our
primary goal (inference efficiency) , it would be better if direct conversion from
ANN to T1 would be feasible. This is challenging due to layerwise spike decay as
discussed in detail in section 4 of main manuscript. In this part, we revisit this
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Fig. 2. Rewards during training on Cartpole environment with- (a) ANN-DQN and
(b) SNN-DQN (T1), (c) SNN-DQN (T3), and (d) SNN-DQN (T5).

from a different angle. First, we obtain the layerwise Vth for T1. Then, using
this set of Vth, we convert a VGG16 ANN to SNN, on CIFAR10 and CIFAR100
to investigate whether these thresholds trained for T1 can enable training with
1 timestep directly following ANN-SNN conversion. However, training failure
occurs in this case too, since during T1 training, the weights (w) get modified in
addition to the thresholds, and layerwise spike propagation depends on both Vth

and w. Even if training had converged in this case, the challenge would remain
how to obtain the suitable Vth for T1 without the proposed iterative process,
however it would indicate the existence of deep T1 SNNs which can be trained
by ANN-SNN conversion followed by direct SNN domain T1 training. But in our
experiments, we are unable to find such networks, further validating the need of
iterative initialization and retraining.

6 Additional Results on Reinforcement learning

In this section, we provide supplementary results on our experiments on RL
tasks (Cartpole and Atari pong). The details of network architectures, training
hyperparameters and training dynamics are described in the following.
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6.1 Results on Cartpole

For the cartpole task, we use a small network with 3 convolutional and a fully
connected layer. The first convolutional layer has 16 5X5 filters with stride 2,
second and third convolutional layers have 32 5X5 filters with stride 2 each. The
fully connected layer has 2 neurons, corresponding to the number of actions. We
use RMSProp as optimizer for training. The networks are trained with batch
size of 128, discount factor (γ) of 0.999 and replay memory of 10000. Figure 2
shows the results for the cartpole environment. We repeat all experiments for
400 episodes, in this game, the duration for which the agent is able to continue
the game (keep the balance), is the reward; so higher game duration means bet-
ter performance. The blue trajectory shows the rewards at each episode, which
has some variation across episodes, the yellow curve shows the accumulated
average reward. As can be seen, the SNN outperforms the ANN in terms of
reward with just 3 timesteps. For SNN-DQN with 1 timestep (T1), the SNNs
performs slightly worse compared to ANN-DQN. As we increase the simulation
time-window (number of timesteps), the SNN performance improves further as
expected, with the average reward for T5 being 52.2±4.3 (mean±standard de-
viation), whereas for the ANN, this metric is 40.3±4.8. We anticipate this im-
provement in multi-timestep SNNs is due to inherent memory of previous inputs
which results from the residual membrane potential in the spiking neurons. As a
result, SNNs offer an advantage compared to feed-forward ANNs for tasks with
a sequential component. In RL tasks, since the decision-making is sequential and
past frames possess some information about what the next plausible state and
corresponding action could be, SNNs might be better suited to leverage such
kind of environment. However, cartpole balancing is a very simple task, so to
further explore the potential of the proposed method in obtaining low latency
solutions for SNN-based RL, we next apply the proposed SNN-DQN framework
to Atari pong environment.

6.2 Results on Atari pong

Atari pong is a two-dimensional gym environment that simulates table tennis.
Here, the agent steps through the environment by observing frames of the game
(reshaped to 84X84 pixels), interacts with the environment with 6 possible ac-
tions, and receives feedback in the form of the change in the game score. For
our experiments, we first train an ANN based deep Q network (DQN), where
we use the same DQN proposed in [5] with 3 convolution layers and 2 fully con-
nected layers. The first convolution layer has 32 8X8 filters with stride 4. The
second convolution layer has 64 4X4 with stride 2. The third convolution layer
has 64 3X3 filters with stride 1. The fully connected layer has 512 neurons. The
number of neurons in the final layer for any game depends on the number of
valid actions for that game, which in this case is 6. Training is performed with
Adam optimizer with learning rate 0.00001, batch size 128, discount factor(γ)
0.99 and replay buffer size 100000. Results of our experiments are shown in
Fig. 3. Rewards obtained during ANN-DQN training are depicted in Fig. 3 (a).
As mentioned in the discussion of RL-SNN in section 5 of the main manuscript,
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ANN-DQN achieves reward of 19.7±1.1. The training dynamics using T5, T3
and T1 SNN DQN are shown in Fig. 3 (b), (c), (d) respectively. Reward and
efficiency analysis of these networks compared to ANN-DQN is given in section
5 of the main manuscript. Additionally, we report the performance of DQNs
with converted SNNs in Fig. 3 (e). Note, these SNNs do not undergo any train-
ing in SNN domain, rather they are converted from corresponding ANN-DQNs
and used for inference. Reward obtained the converted SNN with 100 timesteps
is 19.4±1.3, so converted SNN-DQNs (SNN-conv DQNs) perform comparably
to ANN-DQNs as also reported in [11], however the bottleneck is they require
∼100 timesteps for high performance. Using the proposed method, we obtain T5
SNN-DQNs with comparable performance to their ANN counterparts, but with
considerably lower compute cost (5.22X). We have reported the spike rates for
T1 SNN-DQN in Fig. 3 (c), of the main manuscript. For comparison purposes,
we also consider the layerwise spike rate for the converted SNN-DQN as shown
in Fig. 3 (f). In this case, the average spike rate is 2.92, which leads to 1.75X
higher energy efficiency for the SNN-conv DQN (T100) compared to ANN-DQN.
As a result, T5 SNN DQN provides 2.98X improvement in energy efficiency over
SNN-conv DQNs as proposed in [11], while achieving comparable performance.
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Fig. 3. Rewards during training on Atari pong environment with- (a) ANN-DQN and
(b) SNN-DQN (T5), (c) SNN-DQN (T3), and (d) SNN-DQN (T1), (e) SNN-Conv DQN
(T100), and (f) layerwise spike rate for the network in (e).


