NeuMesh: Learning Flexible and Disentangled
Neural Mesh-based Implicit Field
for Geometry and Texture Editing
Supplementary Material

Bangbang Yang!*, Chong Bao'*, Junyi Zeng!, Hujun Bao', Yinda Zhang?f,
Zhaopeng Cui'f, and Guofeng Zhang'*

1 State Key Lab of CAD&CG, Zhejiang University
2 Google

In this supplementary material, we describe more details of our method, in-
cluding model architecture in Sec. A, geometry editing in Sec. B.2, and texture
editing in Sec. B.3. Besides, we also provide more discussions including limita-
tions in Sec. C and experiment results in Sec. D.

A Model Architecture

The detailed model architecture is shown in Fig.A. To begin with, we first extract
a triangle mesh with marching cubes [7] from NeuS’s [14] SDF field, where we set
the voxel resolution as 256 and the spatial range as [—1, 1]. Then, for each query
point x, we find K nearest vertices (with K = 8 in our experiments) and obtain
the interpolated geometry code (32 dimensions), texture code (32 dimensions)
and learnable signed distance (scalar) from these vertices. Before feeding into
the network, we apply positional encoding to the signed distances (with 8 fre-
quencies), interpolated codes (with 2 frequencies) and viewing directions (with
4 frequencies). The geometry decoder and the radiance decoder are constructed
with a MLP of 3 / 4 hidden layers and 256 hidden sizes, and we use SoftPlus
/ ReLU activation, respectively. During the rendering stage, we first sample 64
coarse points along the ray and adopt a progressive up-sampling strategy from
Wang et al. [14] to guide the sampling of 64 fine points, which yields 128 sam-
ples for each ray. Besides, to accelerate rendering and training, we pre-compute
near-far bound for each ray by counting the minimum and maximum distances
of ray-to-mesh intersections.

B Implementation Details

B.1 Training Details

As introduced in our main paper, we adopt a distillation and fine-tuning train-
ing scheme. Practically, for each object, we first train a teacher model (i.e.,

*Bangbang Yang and Chong Bao contributed equally to this work.
fCorresponding authors.

2 Bangbang Yang and Chong Bao et al.

j 2 2 256 ——
l% (X) 32 56 56 56 S

O —

7 145 —J

h(X) . Geometry Decoder
S

I'® | 3

Interpolation

256 || 256 || 256 || 256

Geometry Code 19,(x)
Texture Code It(x)

149 L JLJ
i i h d i
Sign Distance A(x) Radiance Decoder
Interpolated Items Vs

Fig. A. The model architecture of NeuMesh.

NeuS [14]). Then, we optimize codes and decoders with output from the teacher
model and the images. During the training process, we use a batch size of 512
rays on a single Nvidia RTX3090-24G GPU, where the queried color and SDF
value for each sample point will also be supervised with the output from the
teacher model (a.k.a distillation loss in Sec. 3.2 Eq.(4)). We adopt the Adam op-
timizer with an initial learning rate of 0.0005 and a cosine annealing scheduler
with 5000 warm-up steps. The training process takes about 16 hours for each
model. Besides, to train on the DTU dataset that contains unbounded back-
ground, we follow previous works [16,14] by taking foreground masks into the
supervision with a binary cross-entropy loss.

B.2 Details of Geometry Editing

With our mesh-based representation, deforming a neural implicit field is as sim-
ple as deforming the corresponding mesh scaffold. The only thing to note is to
keep the local consistency of the learnable signed distances (Sec. 3.1), i.e., the
interpolated signed distance of the locally deformed or rotated region should
keep the same. To achieve this goal, we simply compensate the rotation of the
surface normal to the learnable signed indicator h(x), as: h'(x) = h(x) + 0h,,
where dh, is the relative difference of vertex normal (averaged from the nearby
surface normal) from the original mesh to the deformed mesh, and h’(x) is the
compensated signed indicator.

B.3 Details of Texture Editing

Since our representation disentangles textures into locally bounded texture codes
saved on mesh vertices, texture editing for a neural implicit field can be accom-
plished by updating or optimizing texture codes (and the binding encoders) for
the region of interest.

NeuMesh 3

L

NeRF-Syn. Mic

Fig. B. We show more comparison of rendering quality on the DTU dataset
and the NeRF 360° Synthetic dataset. Our rendering results show better ap-
pearance details than NeuS and NeuTex (e.g., the roof at DTU Scan 37, and the metal
grids at NeRF-Synthetic Mic).

Texture swapping. We can easily swap textures of two areas by swapping tex-
ture codes on the surface, as long as we find the correspondence from the source
area’s vertices to the target area’s vertices. To this end, we provide a solution to
perform texture swapping on two areas that can be reasonably aligned but with
slightly different shapes (e.g., two apples in Fig.4 (a) from the main paper). In
practice, we first choose source and target areas by selecting mesh vertices with
Blender, and annotate 4~9 point correspondences with our scripts between these
two areas. Note that this can also be automated with point cloud or image seg-
mentation tools when deploying to user-friendly applications. Then, we perform
non-rigid mesh alignment by solving scaled transformation with Umeyama [13]
between point correspondences, and then feed the point residual to ARAP [12],
so as to deform the source area to the target area. Finally, we update the texture
codes on the target area by assigning interpolated code (with inverse distance
weighting) from 4 nearest deformed source vertices.

Texture filling. By leveraging NeuMesh, our model supports filling of the user-
selected area on a neural implicit field with a texture template (e.g., furry hair or
golden metal in Fig. 7 (¢)) from a pre-captured object model. First, we need to
obtain the target UV-map of the selected area, i.e., utilizing Blender to unwrap
the UV-map of the selected vertices. Then, we select a texture template from a
pre-trained NeuMesh model, e.g., a small squared patch with ~10 vertices, and
repeatedly fill the target UV-map with the template in a sliding-window manner.
Practically, we assign texture codes in the target vertices with interpolated codes

4 Bangbang Yang and Chong Bao et al.

lgh
& 7

Original ~ Source Texture Editing on 3D Textured Mesh Editing on NeuMesh

Fig. C. We show the comparison between textured mesh editing and our NeuMesh
editing on a statue. This proves that direct editing texture meshes with template
patterns without lighting and material property estimation cannot provide satisfactory
results.

from the template and also bind the radiance decoder to the one from the pre-
trained model, as the target texture code and the template texture code do not
share the same latent radiance space. Besides, to make a smooth transition near
the area boundary (e.g., naturally transiting from the edited appearance to the
original appearance), for each query point that has texture codes/decoders from
different sources, we fuse the color contribution from different decoders with
inverse distance weighting.

Texture painting. As introduced in our main paper (Sec.3.4), we propose a
spatial-aware optimization to precisely transfer the painting from 2D image to
3D field, while keeping geometry and appearance of other parts unchanged. In
detail, we first shoot probing rays from the painted pixels to the mesh scaffold,
and find the affected texture codes by collecting the vertices of the hit faces.
During optimization, we adopt Adam optimizer with the fixed learning rate of
0.01, and only allow these codes to be changed. The whole texture painting
optimization takes about ~1 hours with 8000 iterations.

C More Discussions

Using neural implicit representation instead of traditional textured
mesh. Neural implicit representation merits easy-reconstruction with photo-
realistic volumetric rendering and view-dependent effects (e.g., shiny golden ma-
terials) on both real-world and synthetic data, and flexibility to accomplish some
fine-grained editing demands (e.g., material editing or appearance variations) on
the real-world scene with latent space operations. While the rendering quality
of the textured mesh is bounded by the MVS reconstruction and texturing. It is
not feasible for the textured 3D mesh to achieve such effects (see Fig. C) without
BRDF material properties and lighting estimation.

Using learnable signed distance. Unlike voxel-based [4,11] or point-cloud-
based [9] methods that possess spatially scattered features, we only learn a set
of ‘single layer’ features on mesh surfaces as we want to build a surface-aligned
implicit field. Therefore, a bare code interpolation is not sufficient to coordinate

NeuMesh 5

£

v & 3 -
/i*f » P
- P
,*’ <t -
- L x
Original Texture Swapping Area Result

Fig. D. Texture swapping with different geometry.

the query relative position for our mesh-based representation, (i.e., the inner
and outer point queries along the direction perpendicular to the surface still
lack spatial distinguishability). One plausible solution is to use a physically
computed signed distance to the surface as Liu et al. [5] does, but it is not
applicable for general object meshes because the geometry is not always well-
defined (e.g., watertight or even predefined skinning weights) as a human-body
model (SMPL) [6], which confuses ray-to-mesh intersection counting and the sign
of the distance might be unexpectedly reversed. Therefore, we propose to use
a learnable sign indicator to compute interpolated signed distances for spatial
query points, as described in Sec. 3.1.

Using distillation instead of training from scratch. As explained in Sec. 3.2,
we exploit the teacher NeuS model with distillation and fine-tuning training
scheme instead of training from scratch. The teacher NeuS model serves two
purposes: 1) it provides an SDF field where we could extract a mesh scaffold; 2)
the locally embedded geometry and appearance features in our model facilitate
region-based editing but may lead the training to fall into a local minimum (as
shown in our ablation studies), and the use of distillation helps to alleviate such
training issue.

Texture swapping with different geometry/topology. Our method can
be applied to objects with a moderate geometry difference (see Fig. C). If there
is a significant topology difference between two objects, we suggest using tex-
ture filling (Sec. 3.4 (2)) that swaps textures in UV spaces regardless of object
geometries.

Limitations for real-world applications. Currently, our rendering speed
(about 30s for each view) is bounded by the intensive network queries and nearest
neighboring searching operations. When deploying to real-world applications, we
might consider accelerating the inference speed to fulfill the real-time rendering
demand with recently proposed coefficient caching techniques [11,3] , multires-
olution hash encoding [8] or MVS priors [2]. Besides, we rely on 3D modeling
software to select vertices for the region of interest, which can be replaced with
some semantic annotation approaches [15] to facilitate broaden users.
Relation to point-based methods. From a high-level perspective, both ours
and point-based methods can be regarded as building upon local feature-based
representations, while the main differences include: 1) Our model encodes fea-

6 Bangbang Yang and Chong Bao et al.

DTU
Scan 69

w/o Learnable Uniform Grid- Relative Position Ours
Signed Distance based

Fig. E. We present visual comparison to alternative designs.

Config, DTU 69 NeRF 360° Synthetic Lego
PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS |
w/o Learnable Signed Distance 23.622 0.865 0.210 20.827 0.827 0.240
Uniform Grid 26.931 0.943 0.117 25.866 0.898 0.094
Relative Position 26.308 0.937 0.128 27.270 0.918 0.055
Ours 27.254 0.946 0.113 27.881 0.926 0.046

Table A. We perform more experiments to analyze the model design with DTU Scan
69 and NeRF 360° Synthetic Lego.

tures on mesh vertices, so we can easily deform objects with a mesh proxy
or modify textures through a UV space. Point-based methods use scattered
point features, so it is non-trivial to perform mesh-based editing like ours, i.e.,
each point that is projected at the pixel (NPBG) or lying nearby ray samples
(Point-NeRF') would contribute to the appearance, making it hard to distinguish
which point features should be edited. 2) We embed surface normal (similar to
IDR/NeuS) to realize view-dependent effects of texture filling, which cannot be
directly inherited by point-based methods.

D More Experiment Results

Rendering quality comparison. We present more results of rendering quality
comparison in Fig. B. It is clear that our method renders more details than other
competitors, especially when reconstructing with complex shapes and textures
(e.g., the roof at DTU Scan 37, and the metal grids at NeRF-Synthetic Mic in
Fig B).

Rendering quality with varying mesh vertex numbers. We analyze the
impact of varying mesh vertex numbers on rendering quality. Specifically, we
train on DTU Scan 114 with 3 sets of mesh vertices (10K, 50K, and 100K).
As shown in Fig. F, the metric quality of rendered images are slightly affected

NeuMesh 7

Ground Truth NeuS Our (10K) Our (50K) Our (100K)
(PSNR1/SSIM?1/LPIPS|) 24.76/0.91/0.20 25.04/0.90/0.14 25.30/0.91/0.12 27.24/0.92/0.11

- B

BT

N LR m-

Fig. F. We analyze the impact of vertex numbers on the rendering quality by training
with 10K / 50K / 100K vertices.

when decreasing vertex numbers, but still outperform NeuS even with only 10K
vertices, which demonstrate the robustness and advantages of our representation.
Learnable signed distance. We report the training results without learnable
signed distance as network input in Fig. E (first column) and Tab. A (first row),
which proves the necessity of this design in our mesh-based representation, as
it complements spatial distinguishability on the direction perpendicular to the
surface (Sec. 3.1).

Mesh-based representation vs. uniform grid-based representation. We
first compare our ‘single layer’ mesh-based representation with a uniform grid-
based representation (i.e., similar to NSVF [4] or Plenoxel [11]). Specifically, we
thicken the mesh vertices to uniform grids, so the interpolated codes can be fully
aware of the spatial coordinates, and the signed distance can be omitted. Note
that this also loses some flexibility for fine-grained editing. As shown in Fig. E
(second column) and Tab. A (second row), even with only a single slice of spatial
features, our method shows on par visual quality with these uniform grid-based
representation, but enables the functionalities of geometry and texture editing.
Learnable signed distance vs. relative position. We then compare the en-
coding of our learnable signed distance with an alternative design, i.e., relative
position encoding from PointNet [10]. Specifically, for each query point, we first
concatenate codes (from nearby vertices) and relative coordinate offsets (from
query to vertex), and encode with a shallow MLP (with 2 hidden layers and 64
hidden sizes). Then, we use the same inverse distance weighting to obtain the
final interpolated embedding for the query. As demonstrated in Fig. E (third
column) and Tab. A (third row), our learnable signed distance encoding shows
better rendering quality when incorporated with such ‘single layer’ surface fea-
tures and is a better choice for mesh-based representation.

Our texture editing vs. radiance field warping. One possible workaround
of texture editing is to warp the radiance field from the original space to the
aligned space according to the non-rigid mesh alignment (Sec. 3.4). So, we com-
pare our code updating based texture editing with such naive radiance field
warping on DTU Scan 63. As shown in Fig. G, the rendered apple of the naive

8 Bangbang Yang and Chong Bao et al.

(a) Radiance Field Warping (b) Our Texture Code Swapping

Fig. G. We show the comparison of our texture editing to the field warping.

-
—-——P ‘
83 .’
LR |
-
Original Object g Geometry Editing Texture Filling Painting) Object with Transferred Painting

and Geometry Deformation

* Swapping

‘—;’ B Area
p 1
U

Original Object Geometry Editing Texture Swapping Painting Object with Transferred Painting
- J and Geometry Deformation

Fig. H. We show examples of hybrid object editing by combining multiple editing
operations.

approach contains noticeable artifacts, while our editing result is visually much
more natural. We believe that this is mainly due to the fact that the warped tex-
ture field might not be compatible with the geometry (SDF field), which leads
to spatial misalignment (e.g., SDF field is close to the surface while radiance
field is not) during the volume rendering process and produces erroneous color.
In contrast, since our method exchanges textures through code swapping, the
edited texture field is tightly fit to the geometry, which yields a better rendering
quality.

Hybrid object editing. To demonstrate the editing flexibility of our method,
we show examples of hybrid object editing in Fig. H by combining geome-
try /texture editing operations, which sheds light on integrating our represen-
tation into modern 3D modeling workflow.

Large-scale scenes. The modeling ability of our method depends mainly on
the teacher SDF model. As long as the scaffold mesh is available, our method
can be freely scaled-up thanks to the locally embedded features. For large scenes
with complicated backgrounds, we can adopt NeRF++ [17]’s parameterization
to handle unbounded backgrounds, or use pre-computed segmentation masks like

NeuMesh 9

‘/ = AJ—

Texture Filling on Family Status Texture Painting on Barn

Fig. I. Texture editing of large-scale scenes on the Tanks& Temple dataset.

PSNR /SSIM / LPIPS PSNR /SSIM /LPIPS PSNR /SSIM / LPIPS
24.897 /0.906 / 0.194 25.130/0.908 /0.182 25.304/0.912/0.130

294 Vertices (Sparse Triangles) ' 361 Vertices (Uneven Triangles) 50K Vertices

in NSVF and IDR. Here are two texture editing examples on the Tanks&Temple
dataset with foreground segmentation provided by NSVF.

Influence of triangle quality. Our method can still deliver reasonable render-
ing quality with locally sparse/uneven triangulation (see below). In fact, as the
mesh scaffold is created based on the SDF from teacher NeuS, we can handily
guarantee a uniformed distribution of vertices with off-the-shelf mesh regular-
ization algorithms (e.g., isotropic remeshing by Botsch et al. [1]).

10

Bangbang Yang and Chong Bao et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Botsch, M., Kobbelt, L.: A Remeshing Approach to Multiresolution Modeling. In:
Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing. pp. 185-192 (2004) 9

. Chen, A., Xu, Z., Zhao, F., Zhang, X., Xiang, F., Yu, J., Su, H.: Mvsnerf: Fast

generalizable radiance field reconstruction from multi-view stereo. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 14124-14133
(2021) 5

Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: FastNeRF:
High-fidelity Neural Rendering at 200FPS. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision. pp. 14346-14355 (2021) 5

Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural Sparse Voxel Fields.
Advances in Neural Information Processing Systems 33, 15651-15663 (2020) 4, 7
Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural Ac-
tor: Neural Free-view Synthesis of Human Actors with Pose Control. ACM Trans-
actions on Graphics (TOG) 40(6), 1-16 (2021) 5

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: A
Skinned Multi-person Linear Model. ACM Transactions on Graphics (TOG) 34(6),
1-16 (2015) 5

Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm. ACM SIGGRAPH Computer Graphics 21(4), 163-169 (1987)
1

Miiller, T., Evans, A., Schied, C., Keller, A.: Instant Neural Graphics Primitives
with a Multiresolution Hash Encoding. ACM Trans. Graph. 41(4), 102:1-102:15
(Jul 2022) 5

Ost, J., Laradji, 1., Newell, A., Bahat, Y., Heide, F.: Neural Point Light Fields.
arXiv preprint arXiv:2112.01473 (2021) 4

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. In: Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. pp. 652-660 (2017) 7

Sara Fridovich-Keil and Alex Yu, Tancik, M., Chen, Q., Recht, B., Kanazawa, A.:
Plenoxels: Radiance Fields without Neural Networks. In: CVPR (2022) 4, 5, 7
Sorkine, O., Alexa, M.: As-rigid-as-possible Surface Modeling. In: Symposium on
Geometry Processing. vol. 4, pp. 109-116 (2007) 3

Umeyama, S.: Least-Squares Estimation of Transformation Parameters Between
Two Point Patterns. IEEE Transactions on Pattern Analysis & Machine Intelli-
gence 13(04), 376-380 (1991) 3

Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: Learn-
ing Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction.
NeurIPS (2021) 1, 2

Wang, W., Yu, R., Huang, Q., Neumann, U.: SGPN: Similarity Group Proposal
Network for 3D Point Cloud Instance Segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 2569-2578 (2018) 5
Yariv, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Ronen, B., Lipman, Y.:
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appear-
ance. Advances in Neural Information Processing Systems 33, 2492-2502 (2020)
2

Zhang, K., Riegler, G., Snavely, N., Koltun, V.: NeRF++: Analyzing and Improv-
ing Neural Radiance Fields. arXiv preprint arXiv:2010.07492 (2020) 8

