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S1 Proposed camera model

We describe details of our proposed camera model. For this supplementary, we
again show our generic camera model as

γ = f(η + k1η
3), (S1)

where γ is distortion, f is focal length, η is an incident angle, and k1 is a distortion
coefficient.

S1.1 Incident angle limitations

We limit incident angles to consider the physical size of cameras, that is, outer
image circles. Incident angle limitations in our generic camera model in Equa-
tion (S1) are shown in

γ =

{
f(η + k1η

3) if η < ηmax

invalid otherwise
, (S2)

where ηmax is the maximum incident angle and "invalid" means that the camera
projection is not determined in Equation (S1). The pixel values are regarded
as outer image circles in the invalid case. Note that our loss function does not
encounter the invalid case because sampling points on a unit sphere are generated
within valid incident angles.

S1.2 Uniqueness of closed-form solution

We demonstrate that our closed-form solution in back-projection has a unique
solution. For the back-projection in Equation (S1), converting image coordinates
to incident angles, we solve the cubic equation against η using a closed-form ex-
pression called Cardano’s formula in Section S3. In general, the solution consists
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of three complex numbers. However, we always select an optimal real number
for η in our generic camera model.

Through theoretical analysis, we found that the solution is categorized into
two types: one real number and three real numbers for the solution. This cate-
gorization depends on the sign of discriminant D of the cubic equation in Equa-
tion (S11) described later. In the case of three real numbers, we select the op-
timal solution in the middle of the three real numbers because the minimum
and maximum numbers are pseudo incident angles. The minimum real number
is a negative value that does not satisfy the condition of η > 0. Based on our
theoretical investigation, the maximum real number is out of the incident angle
range, that is, 0 < η < ηmax. Therefore, we can calculate the back-projection
without ambiguity.

S1.3 Camera parameter ranges

We must determine camera parameter ranges because our network predicts nor-
malized camera parameters from 0 to 1. Unlike conventional learning-based
methods, we found that our camera parameter ranges can be determined. Trigono-
metric function models for fisheye lenses [6,11] and pinhole camera projection
are shown in

γ =


f sin η (i)
2f sin(η/2) (ii)
fη (iii)
2f tan(η/2) (iv)
f tan(η) (v)

, (S3)

where (i) is orthogonal projection, (ii) is equisolid angle projection, (iii) is equidis-
tance projection, (iv) is stereographic projection, and (v) is pinhole camera pro-
jection. Note that the projection from (i) to (iv) is the standard fisheye projection
of off-the-shelf cameras.

Trigonometric function models in Equation (S3) can be rewritten using the
Taylor series expansion based on a third-order polynomial function as

γ =


f(η − 1/6 · η3) (i)
f(η − 1/24 · η3) (ii)
fη (iii)
f(η + 1/12 · η3) (iv)
f(η + 1/3 · η3) (v)

. (S4)

Our proposed generic camera model in Equation (S1) satisfies all projection
in Equation (S4) by adjusting k1. We, thus, define that the range of k1 is from
−1/6 to 1/3. The range of focal length f from 6 to 15 [mm] was determined on
the basis of off-the-shelf specifications in Table S1 because our generic camera
model has explicit focal length.
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Table S1: Details of off-the-shelf fisheye cameras with experimental IDs

ID Camera body Camera lens Projection Focal length [mm] Maximum incident
angle [deg]

1 Canon EOS 6D Canon EF8-15mm F4L Fisheye USM Equisolid angle1 8–15 90
2 Canon EOS 6D Canon EF15mm F2.8 Fisheye Equisolid angle1 15 90

3 Panasonic LUMIX GM1 Panasonic LUMIX Equisolid angle 14.82 90G FISHEYE 8mm F3.5
4 FLIR BFLY-U3-23S6C FIT FI-40 Orthogonal 13.92 84
5 FLIR FL3-U3-88S2 FUJIFILM FE185C057HA-1 Equidistance 6.12 92.5
6 KanDao QooCam8K Bulit-in Stereographic1 6.01,2 901

1 Our estimation
2 Conversion focal length using a full-size image sensor

Table S2: Comparison of mean SSIM on the test set of trigonometric function models

StreetLearn SP360

Method Stereo- Equi- Equisolid Ortho- All Stereo- Equi- Equisolid Ortho- Allgraphic distance angle gonal graphic distance angle gonal

Alemán-Flores [1] 0.308 0.282 0.267 0.208 0.266 0.356 0.322 0.302 0.223 0.301
Santana-Cedrés [12] 0.341 0.304 0.285 0.224 0.288 0.387 0.343 0.322 0.253 0.326

Liao [8] 0.357 0.365 0.372 0.406 0.375 0.400 0.406 0.412 0.447 0.416
Yin [17] 0.344 0.351 0.357 0.396 0.362 0.385 0.390 0.396 0.434 0.401
Chao [5] 0.396 0.384 0.383 0.406 0.392 0.436 0.427 0.427 0.454 0.436

Bogdan [3] 0.356 0.357 0.359 0.366 0.359 0.487 0.462 0.454 0.441 0.461
Li (GeoNetS-B) [7] 0.439 0.416 0.411 0.423 0.422 0.481 0.459 0.453 0.469 0.466
López-Antequera [9] 0.494 0.462 0.450 0.432 0.460 0.458 0.438 0.434 0.458 0.447

Wakai [14] 0.658 0.688 0.655 0.501 0.626 0.695 0.690 0.650 0.537 0.643

Ours w/o HNGBL1 0.780 0.831 0.813 0.690 0.779 0.773 0.839 0.828 0.719 0.790
Ours 0.791 0.857 0.838 0.686 0.793 0.784 0.856 0.841 0.719 0.800

1 "Ours w/o HNGBL" refers to replacing HNGBL with non-grid bearing loss [14]

S1.4 Evaluating our camera model

We describe details of evaluating our camera model in Table 1 (main paper).
Equation (S1) shows the relation between an incident angle η and distortion γ
representing the distance from the principal point at an image sensor. To convert
image-sensor coordinates of γ to pixel coordinates, we assumed a full-size image
sensor and 224-pixel image height. This image height corresponded to the input
image height for our network. This assumption was used for the readability that
we can easily understand pixel coordinates rather than image-sensor coordinates.
Note that the image-sensor size and the image height are scale factors.

S1.5 Camera parameter distribution for train set

To generate our train images, we used random distribution based on the proce-
dure [14] for rotation angles and aspect ratio, and we determined the range of
ηmax as follows. The maximum incident angle tends to be 90◦ in off-the-shelf fish-
eye cameras because of the physical size of cameras. Considering this tendency,
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Figure S1

(a) StreetLearn
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(b) SP360
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Fig. S1: Error distribution of our method on the test set for our generic camera model
using the StreetLearn [10] and SP360 [4] datasets shown in (a) and (b), respectively. The
horizontal and vertical axes show ground-truth (GT) and predicted camera parameters,
respectively. The diagonal red lines indicate perfect prediction, and each blue point
indicates a predicted result.

we used 90◦ for the center of uniform distribution of ηmax. As shown in Table S1,
the ID 4 camera has the most difference of ηmax from 90◦, and this difference
is 6◦. We can determine the range of ηmax with 84–96◦; that is, the lower bound
is 84◦ = 90◦ − 6◦ and the upper bound is 96◦ = 90◦ + 6◦.

S2 Experiments

To validate the adaptiveness of our method to various types of fisheye cameras,
we demonstrate supplemental results.

S2.1 Comparison using SSIM

To demonstrate validity and effectiveness in images, we use the structural sim-
ilarity (SSIM) [15] for intrinsic parameters; that is, extrinsic parameters are
arbitrary. Table S2 shows the performance on the trigonometric function models
in the StreetLearn [10] and SP360 [4] datasets. Similar to the result of the peak
signal-to-noise ratio (PSNR) in the main paper, our method had the highest
SSIM in all cases. This suggests that our generic camera model can behave like
a trigonometric function model.
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(a) StreetLearn
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(b) SP360
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Fig. S2: Error frequency distribution of our method on the test set for our generic
camera model using the StreetLearn [10] and SP360 [4] datasets shown in (a) and (b),
respectively. This frequency distribution is illustrated using box plots and violin plots.
The horizontal and vertical axes show camera parameter ranges and the mean absolute
errors of camera parameters, respectively. The mean values are indicated at the top of
the plots. Each camera parameter range is divided into 10 classes at equal intervals.

S2.2 Error distribution of camera parameters

To evaluate error distribution, we analyzed the results of predicted camera pa-
rameters. Figure S1 shows the error distribution between ground-truth and pre-
dicted camera parameters using our method. Most of the predicted camera pa-
rameters are close to the ground-truth values; that is, points of the predicted
values are close to the perfect prediction indicating diagonal lines in Figure S1.

Moreover, we examined detailed error distribution in that we divided the
range of camera parameters at equal intervals. For example, the divided 10
ranges of tilt angles θ were [−90◦,−72◦], [−72◦,−54◦], . . . , [72◦, 90◦]. We
visualized the error distribution of each divided range using box plots and violin
plots1 in Figure S2. The box plots show that all the boxes had slight errors,
although errors increased at the edge of the ranges, for example, [−90◦,−72◦] in
tilt angles θ. Furthermore, each violin plot shows that the error distribution is a
single peak close to the median. This single peak suggests that our network was
well optimized because optimization failure may cause multiple peaks. Overall,
our predicted results had slight errors throughout the camera parameter ranges.

1 A violin plot is one of the distribution plots similar to a box plot. Unlike box plots,
the violin plot can indicate the probability density of the distribution using shapes
like a violin instead of a box. We can easily distinguish a single peak and multiple
peaks on the basis of this probability density.
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Table S3: Feature summarization of our method and conventional methods including
additional methods

Method DL1 Rot1 Dist1 >180◦ FOV1 Projection Network

Alemán-Flores [1] ✓ Perspective –
Santana-Cedrés [12] ✓ Perspective –

Liao [8] ✓ ✓ Perspective Regressor
Yin [17] ✓ ✓ ✓ Generic camera [6] Regressor
Chao [5] ✓ ✓ – – Generator (GAN)

Bogdan [3] ✓ ✓ ✓ Unified spherical model [2] Regressor
Yang [16] ✓ ✓ – – Generator

Li (GeoNetS-B) [7] ✓ ✓ – – Generator
Li (GeoNetS-R,P) [7] ✓ ✓ – – Generator
López-Antequera [9] ✓ ✓ ✓ Perspective Regressor

Wakai [14] ✓ ✓ ✓ ✓ Equisolid angle Regressor
Ours ✓ ✓ ✓ ✓ Proposed generic camera Regressor

1 DL denotes learning-based method; Rot denotes rotation; Dist denotes distortion; ">180◦ FOV" denotes supporting over 180◦ FOV

Figure S5

StreetLearn SP360

Input Li
GNS-ℬ

Li
GNS-ℬ
GNS-ℛ
GNS-𝒫𝒫

Ours GTLi
GNS-ℬ
GNS-ℛ

Input Li
GNS-ℬ

Li
GNS-ℬ
GNS-ℛ
GNS-𝒫𝒫

Ours GTLi
GNS-ℬ
GNS-ℛ

Fig. S3: Qualitative results of fully recovering rotation and fisheye distortion for our
generic camera model shown in the input image, results of Li (i), Li (ii), Li (iii), our
method, and the ground-truth image from left to right for each image. The details of
Li’s methods [7] are as follows: Li (i) is results using GNS-B; Li (ii) is results using
GNS-B and GNS-R; Li (iii) is results using GNS-B, GNS-R, and GNS-P. Note that
we employed the transformation in the order of attached networks from top to bottom.

S2.3 Comparison using cascaded transformation

To validate the effectiveness of full recovery, we conducted cascaded transfor-
mation using Li’s methods [7]. Table S3 shows the feature summarization of
our method and conventional methods including additional methods mentioned
in this supplementary. Li et al . [7] proposed various image transformation net-
works for rotation and distortion. We found that Li’s methods [7] can obtain fully
recovered images when we employ image transformation as follows. First, we re-
moved fisheye distortion using GeoNetS-B (GNS-B), which is the single-model
distortion network to remove barrel distortion. Second, we rotated the undis-
torted image using GeoNetS-R (GNS-R), which is the single-model distortion
network to remove image rotation. Finally, we transformed the rotated image to
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Table S4: Additional comparison of mean PSNR and SSIM on the test set for our
generic camera model

StreetLearn SP360

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Diag1 Circ1 All Diag Circ All Diag Circ All Diag Circ All

Yang [16] w/o p.p.2 12.98 10.92 11.96 0.287 0.239 0.263 12.09 10.04 11.08 0.319 0.260 0.290
Yang [16] w/ p.p.3 22.12 19.50 20.82 0.599 0.497 0.548 21.22 18.93 20.09 0.617 0.531 0.574

Ours 28.39 29.63 29.01 0.828 0.847 0.838 27.19 29.03 28.10 0.819 0.852 0.835
1 Diag denotes evaluation using only diagonal fisheye images; Circ denotes evaluation using only circumferential fisheye images
2 Yang [16] without the postprocess of image scaling
3 Yang [16] with the postprocess of image scaling
4 "Ours w/o HNGBL" refers to replacing HNGBL with non-grid bearing loss [14]

Table S5: Additional comparison of mean PSNR on the test set for the trigonometric
function models

StreetLearn SP360

Method Stereo- Equi- Equisolid Ortho- All Stereo- Equi- Equisolid Ortho- Allgraphic distance angle gonal graphic distance angle gonal

Yang [16] w/o p.p.1 12.10 11.02 10.48 8.86 10.61 11.27 10.17 9.57 7.75 9.69
Yang [16] w/ p.p.2 20.96 20.08 19.63 17.54 19.55 20.15 19.44 19.06 17.12 18.94

Ours w/o HNGBL3 26.49 29.08 28.56 23.97 27.02 25.35 28.53 28.26 23.85 26.50
Ours 26.84 30.10 29.69 23.70 27.58 25.74 29.28 28.95 23.93 26.98

1 Yang [16] without the postprocess of image scaling
2 Yang [16] with the postprocess of image scaling
3 "Ours w/o HNGBL" refers to replacing HNGBL with non-grid bearing loss [14]

the fully recovered image using GeoNetS-P (GNS-P), which is the single-model
distortion network for the projective transformation.

Figure S3 shows the qualitative results of Li’s methods [7] with the cascaded
transformation. Note that we trained Li’s methods using the StreetLearn [10] or
SP360 [4] datasets. In diagonal fisheye images, these methods can recover rota-
tion and distortion. However, the results for the methods had distortion and/or
rotation errors. Our method outperformed Li’s methods [7] on both diagonal
and circumferential fisheye images.

S2.4 Comparison using Yang’s method

To validate the performance of undistortion, we compared an additional method.
Yang et al . [16] proposed a learning-based method that uses a generator to
remove fisheye distortion. We trained Yang’s method using StreetLearn [10] or
SP360 [4] for our evaluation. Although we used Yang’s implementation, which is
publicly available, the undistortion results had low PSNR on the test set for our
generic camera model. We found that Yang’s implementation generated pairs of
distorted and undistorted images with different image scales between the pair of
images. In this generation, undistorted images were transformed using resizing
after cropping. Thus, the image scale of the distorted image did not correspond to
the undistorted image. Note that the magnitude of the scale difference depended
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Figure S6

StreetLearn SP360

Input Yang
w/o p.p.

Ours GTYang
w/ p.p.

Input Yang
w/o p.p.

Ours GTYang
w/ p.p.

Fig. S4: Qualitative results of fisheye undistortion without recovering rotation for our
generic camera model shown in the input image, results of Yang’s method [16] without
the postprocess, Yang’s method [16] with the postprocess, our method, and the ground-
truth image from left to right for each image.

on individual images because the distortion coefficients determined the cropping
areas.

To evaluate Yang’s method [16], we scaled the predicted images to maximize
PSNR by searching the image scale from 1 to 3 with an interval of 0.1. Note that
we scaled images and then center-cropped them to obtain the original image
resolution. We regarded the postprocessed results as an auxiliary evaluation
because the postprocess degraded the image quality due to scaling. Table S4
shows the results of Yang’s method [16] with or without the postprocess of
image scaling on the test set for our generic camera model, and we omitted
other results shown in Table 6 (main paper). Similarly, Table S5 shows the
results of Yang’s method [16] with or without the postprocess of image scaling
on the test set for the trigonometric camera models. We omitted other results
shown in Table 7 (main paper). The postprocess increased PSNR and SSIM
on the test of our generic camera model and the trigonometric function models.
Figure S4 shows the qualitative results of Yang’s method [16] with or without the
postprocess. The result of Yang’s method [16] had image distortion compared
with our method. Considering the difference between our method and Yang’s
method [16] in PSNR, our method seems to outperform Yang’s method [16]. As
described above, it is impossible for us to evaluate the method with complete
fairness.

S2.5 Qualitative evaluation using off-the-shelf cameras

We validated the performance of undistortion and full recovery for off-the-shelf
cameras to describe the image quality after calibration with supplementary
results. Figure S5 shows qualitative results of fully recovering rotation and
fisheye distortion. Learning-based calibration methods were trained using the
StreetLearn [10] or SP360 [4] datasets. Similar to Figure 4 (main paper), the
results for López-Antequera’s method [9] had rotation and distortion errors. Al-
though Wakai’s method [14] removed distortion, the results had rotation errors.
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Figure S4

ID 1
Equisolid angle

ID 2
Equisolid angle

ID 3
Equisolid angle

ID 4
Orthogonal

ID 5
Equidistance

ID 6
Stereographic

López-
Antequera

Wakai OursInput López-
Antequera

Wakai OursInput

(a) Networks trained using StreetLearn (b) Networks trained using SP360

Fig. S5: Qualitative results of fully recovering rotation and fisheye distortion for the off-
the-shelf cameras shown in the input image, results of the compared methods (López-
Antequera [9] and Wakai [14]), and our method from left to right for each image. The
IDs correspond to IDs in Table S1, and the projection names are attached to the IDs
from specifications (ID: 3–5) and our estimation (ID: 1, 2, and 6). Qualitative results
of the methods trained using StreetLearn [10] and SP360 [4] as shown in (a) and (b),
respectively.

Our fully recovered images demonstrated the effectiveness of off-the-shelf fisheye
cameras with various types of projection.

We also evaluated the performance of undistortion using off-the-shelf cam-
eras. Figure S6 shows qualitative results of undistortion without recovering ro-
tation. Our method and Wakai’s method [14] removed fisheye distortion. By con-
trast, the results had distortion errors in Alemán-Flores’s [1], Santana-Cedrés’s [12],
Liao’s [8], Yin’s [17], Chao’s [5], Li’s (GeoNetS-B) [7], and López-Antequera’s [9]
method. In particular, circumferential fisheye images led to large distortion er-
rors in these conventional methods. Overall, our method outperformed all the
conventional methods considering both rotation and distortion errors.

S2.6 Sample off-the-shelf images

We attached sample high-resolution images captured using our off-the-shelf cam-
eras. These images were used for Figure 4 (main paper). For our experiment, we
resized the off-the-shelf images with 224-pixel image height (Himg) and image
width (Wimg = Himg ·A), where A is the image aspect ratio.
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Figure S4
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Wakai Ours

(b) Networks trained using SP360
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Antequera
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(a) Networks trained using StreetLearn

Alemán-
Flores

LiBogdan

Fig. S6: Qualitative results of fisheye undistortion without recovering rotation for
the off-the-shelf cameras shown in the input image, results of the compared meth-
ods (Alemán-Flores [1], Santana-Cedrés [12], Liao [8], Yin [17], Chao [5], Bogdan [3],
Li (GeoNetS-B) [7], López-Antequera [9], and Wakai [14]), and our method from left to
right for each image. The IDs correspond to IDs in Table S1, and the projection names
are attached to the IDs from specifications (ID: 3–5) and our estimation (ID: 1, 2, and
6). Qualitative results of the methods trained using StreetLearn [10] and SP360 [4] as
shown in (a) and (b), respectively. Because of geometric-based calibration, Alemán-
Flores’s [1] and Santana-Cedrés’s methods [12] need not train.



Rethinking Generic Camera Models 11

S3 Appendix of Cardano’s formula

We briefly describe Cardano’s formula to solve back-projection. Cardano’s for-
mula addresses a general cubic equation against x as

a3x
3 + a2x

2 + a1x+ a0 = 0, a3 ̸= 0, (S5)

where a3, a2, a1, and a0 are coefficients of the cubic equation. We rewrite Equa-
tion (S5) by dividing a3 as

x3 +
a2
a3

x2 +
a1
a3

x+
a0
a3

= 0,

x3 + b2x
2 + b1x+ b0 = 0, (S6)

where b2, b1, and b0 are coefficients of the cubic equation. To remove the second-
order term, we also rewrite Equation (S6) as follows:

y3 + py + q = 0, (S7)

y = x+
b2
3
,

where

p = b1 −
1

3
b22,

q = b0 −
1

3
b1b2 +

2

27
b32.

Here, we use y = u+ v to Equation (S7) as

u3 + v3 + q + (3uv + p)(u+ v) = 0. (S8)

Equation (S8) can be converted to simultaneous equations as follows:{
u3 + v3 + q = 0
(3uv + p)(u+ v) = 0

. (S9)

This conversion is acceptable because the fundamental theorem of algebra [13]
ensures that cubic equations have exact three solutions including complex num-
bers. Therefore, we only find the three solutions using any conversion. By re-
moving v in Equation (S9), we can obtain an equation using (u3)2 and u3 as

(u3)2 + qu3 −
(p
3

)3

= 0. (S10)

We solve Equation (S10) as a quadratic equation against u3, given by

u3 = −q

2
±
√(q

2

)2

+
(p
3

)3

= −q

2
±
√
D, (S11)
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where D is the discriminant of this cubic equation. We obtain three real numbers
and one real number of the solution on the condition that D is positive and
negative, respectively. Note that we do not encounter D = 0 in our generic
camera model without the second-order term, although D = 0 leads to multiple
roots of the solution. Therefore, we obtain u using the cube root of 1 as

u = ω 3

√
−q

2
±

√
D, (S12)

where ω = 1, (−1±
√
3 i) / 2. Similar to u, we can calculate v as

v = ω2 3

√
−q

2
∓
√
D. (S13)

Finally, the solution is calculated using y = u+ v and y = x+ b2/3 as

x = −b2
3

+ ω 3

√
−q

2
±
√
D + ω2 3

√
−q

2
∓
√
D. (S14)

In our generic camera model, the equation of back-projection is written as fol-
lows:

k1η
3 + η − γ

f
= 0, f > 0. (S15)

As described above, we can solve Equation (S15) using Cardano’s formula. We
need not use Cardano’s formula if k1 is 0, that is, a linear equation. Note that,
for back-propagation, we can calculate Equation (S14) through an argument of
the complex plane instead of the imaginary unit i.
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