
Streamable Neural Fields - Supplementary

A Training Algorithms

Alg. 1 and Alg. 2 shows the pseudo-code of our progressive and slimmable train-
ing described in section 3.1 in our main paper.

Algorithm 1 Progressive training

Require: Inputs x, targets y
1: θ = {}
2: while not done do
3: θnew ← GrowNetwork()
4: Initialize θnew
5: θ ← θ ∪ {θnew}
6: for epoch = 0 to nsteps do
7: Predict signal values ŷ = fθ(x)
8: Compute loss L(y, ŷ)
9: Compute gradients ∇θnewL
10: Update θnew
11: end for
12: end while

Algorithm 2 Slimmable training

Require: Inputs x, targets y
Require: Parameters {θw1 , . . . , θwK}
1: for epoch = 0 to nsteps do
2: θ = {}
3: for i = 1 to K do
4: θ ← θ ∪ {θwi}
5: Predict signal values ŷ = fθ(x)
6: Compute loss L(y, ŷ)
7: Compute gradients ∇θL
8: Accumulate gradients
9: end for
10: Update θwi , ∀i ∈ {1, ...,K}
11: end for

B Ablation Studies

Weight initialization In this section, we demonstrate the effectiveness of our
proposed initialization method. While leaving the lateral connection as SIREN
initialization [4], our method assigns zero to other newly added weights. The
newly added zero weights encourage the larger sub-network to start training
when the network output is close to the output of the smaller pre-trained sub-
network. We trained two same streamable (progressive) models on every image
in the Kodak dataset but initialized the newly added weights differently. Fig. 1
shows that our initialization method supports faster convergence. Also, we em-
pirically found that our method converges at a lower loss compared to the SIREN
initialization. Furthermore, careful weight initialization is crucial when using sine
activation to maintain the activation and gradient distribution at each layer [4].
Results shown in Fig. 3 imply that adopting our initialization method does not
harm the SIREN activation and gradient statistics.
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Fig. 1. Averaged training loss and PSNR curve of two distinct weight initialization
methods. We made the networks grow at every 50,000 epochs. Our proposed initializa-
tion makes the model converge at higher PSNR.

Training stability We visualized the optimization trajectories of a streamable
(progressive) and an individual model on 3D loss surfaces to better understand
how our model keeps the training process stable. Following Li et al. [2], we ap-
plied PCA to matrix M = [θ0 − θn; . . . ; θn−1 − θn] and used the two leading
principal components as direction vectors: δ and η. Note that θi denotes net-
work parameters at epoch i [2]. One can plot a loss surface by moving the final
parameters along the two directions and computing loss values. More formally,
we plot a function f(α, β) = L(θn + αδ + βη), where α and β are step sizes. To
plot the trajectories, we sampled the parameters every 5 epochs, computed the
loss values, and projected them onto the loss surfaces.

As shown in the first column of Fig. 2, the loss surface of each model’s
smallest network has no extreme non-convexities. However, the trajectories of
the individual model’s larger networks traverse through non-convex regions (the
second row), while the larger networks of the streamable (progressive) model
search for minima predominantly in low-loss regions (the first row). This suggests
that the knowledge (i.e., parameters) learned by the smaller sub-network gives
a good initial point. Since the larger network starts from a point where the loss
value is already low, it converges fast and maintains the training process stable.

C Experimental Details and Additional Results

We provide training details and additional results that are not specified in the
main paper. We show the metric values of each plot in the main paper along
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Fig. 2. Visualization of loss surface and training trajectory. The individual models’
surface is more complex than that of streamable (progressive) models. Each model is
trained on Kodak image 19.

with qualitative results. For every table, bold faces represent the best metric of
each sub-network.

Spectral growing For 1D sinusoidal function reconstruction, we manufactured
a target function f(x) =

∑10
i=1 sin (2πkix+ ϕi). We set ki ∈ {5, 10, ..., 50}, ϕi ∼

U(0, 2π) and sampled x uniformly over [0, 1]. We used an MLP of three hidden
layers with sine activations [4]. We trained using Adam optimizer with a learning
rate of 10−4. Starting with a width of 10 (the channel size of hidden layers), we
gradually increased the size up to 40. Each sub-network was trained for 150
epochs. For image experiment, each model has five layers with sine activations
and no activation on the final layer. We used Adam [1] with a learning rate of
2× 10−4 and trained for 50,000 epochs. For SDF experiment, We used learning
rate of 10−4 and trained for 15,000 epochs. The same loss function described
in [4] is used. Other configurations are same as image experiment.

Table. 1 and Table. 2 shows the quantitative results of spectral growing of
images and 3D shapes respectively. Qualitative results are depicted in Fig. 5 and
Fig. 6. To show the growing frequency more directly, we fit an 800 × 800 sun-
flower image illustrated in Fig. 4. The second row shows the frequency domain of
images reconstructed by streamable (progressive) neural fields. A larger network
reconstructs higher frequency components that are not captured by smaller sub-
networks. We used the same network architecture and training settings used in
Kodak experiments.
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Spatial/temporal growing For image spatial growing experiment, we used
same configurations used in image spectral growing experiment. For video tem-
poral growing experiment, we used six-layer MLP and learning rate of 10−4.
Other configurations are same as image experiment.

Quantitative results of baseline comparison experiments of spatial/temporal
growing are shown in Table. 3 and Table. 4 respectively. Qualitative results are
depicted in Fig. 7 and Fig. 8. To obtain a longer temporal growing video, we fit
the “bikes sequence” video, which consists of 272 × 640 pixels and 240 frames
using the same network architecture and training settings used in the UVG
dataset [3] experiments. We provided the reconstructed video in .mp4 format to
show the result.

sub-network metrics individual
streamable streamable

(slimmable [5]) (progressive)

1

params. 3,903 3,903 3,903
PSNR↑ 24.39 23.72 24.39
SSIM↑ 0.597 0.578 0.597
LPIPS↓ 0.559 0.582 0.559

2

params. 15,003 15,003 15,057
PSNR↑ 27.22 25.64 27.30
SSIM↑ 0.701 0.643 0.704
LPIPS↓ 0.380 0.462 0.298

3

params. 33,303 33,303 33,507
PSNR↑ 29.78 27.29 29.29
SSIM↑ 0.795 0.704 0.775
LPIPS↓ 0.246 0.372 0.190

4

params. 58,803 58,803 58,681
PSNR↑ 31.19 29.19 30.91
SSIM↑ 0.836 0.770 0.825
LPIPS↓ 0.149 0.271 0.129

Table 1. Quantitative results of spectral growing on 24 Kodak images.
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sub-network shapes individual
streamable
(progressive)

1

params. 66,897 66,897
armadillo 0.321 0.321
dragon 0.104 0.104

happy buddha 0.109 0.109

2

params. 133,873 133,981
armadillo 0.137 0.032
dragon 0.128 0.030

happy buddha 0.054 0.019

3

params. 198,388 198,657
armadillo 0.059 0.023
dragon 0.056 0.025

happy buddha 0.042 0.018

Table 2. Chamfer distance of spectral growing 3D shapes.

sub-network metrics individual
streamable streamable

(slimmable [5]) (progressive)

1

params. 14,517 14,517 14,517
PSNR↑ 30.04 24.49 30.04
SSIM↑ 0.820 0.606 0.820
LPIPS↓ 0.190 0.508 0.190

2

params. 29,034 29,067 29,095
PSNR↑ 28.82 24.99 29.62
SSIM↑ 0.801 0.640 0.821
LPIPS↓ 0.202 0.442 0.148

3

params. 43,551 44,307 44,515
PSNR↑ 29.14 26.07 29.55
SSIM↑ 0.807 0.686 0.816
LPIPS↓ 0.190 0.388 0.155

4

params. 58,068 58,803 58,453
PSNR↑ 29.65 27.58 29.91
SSIM↑ 0.819 0.734 0.817
LPIPS↓ 0.177 0.307 0.149

Table 3. Quantitative results of spatial growing on 8 Kodak images.
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Fig. 3. Activation and gradient statistics of SIREN and our initialization after 5 train-
ing epochs. Along with SIREN, our initialization method also preserves the distribu-
tion. Note that our model has no activation on the output layer.
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sub-net. 1 sub-net. 2 sub-net. 3 sub-net. 4

Fig. 4. Frequency spectrum of spectral growing images represented by streamable (pro-
gressive) neural fields. As the network grows, high-frequency components are gradually
reconstructed (darker is smaller).

sub-network metrics individual
streamable streamable

(slimmable [5]) (progressive)

1

params. 441,635 441,635 441,635
PSNR↑ 37.20 32.97 37.27
SSIM↑ 0.957 0.890 0.957
LPIPS↓ 0.023 0.105 0.023

2

params. 883,270 882,836 882,116
PSNR↑ 37.49 34.17 37.99
SSIM↑ 0.959 0.912 0.958
LPIPS↓ 0.022 0.058 0.020

3

params. 1,324,905 1,316,867 1,317,096
PSNR↑ 37.60 34.54 38.22
SSIM↑ 0.960 0.914 0.958
LPIPS↓ 0.022 0.047 0.017

Table 4. Quantitative results of temporal growing on 7 UVG videos.
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Fig. 5. Qualitative results and PSNRs of spectral growing on Kodak image 9. Stream-
able (progressive) neural field has the same or higher representation power compared
to individually trained models.
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Fig. 6. Qualitative results of spectral growing on 3D shapes.
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Fig. 7. Qualitative result of spatial growing on Kodak image 21.
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Fig. 8. Qualitative result of temporal growing on video (Jockey). A larger sub-network
reconstructs the exact residual frames that are not represented by the smaller ones.
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