
MonteBoxFinder: Detecting and Filtering
Primitives to Fit a Noisy Point Cloud

Supplementary Material

Michaël Ramamonjisoa1, Sinisa Stekovic2, and Vincent Lepetit1,2

1 LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-vallée , France
first.lastname@enpc.fr

2 Institute for Computer Graphics and Vision, Graz University of Technology, Graz,
Austria sinisa.stekovic@icg.tugraz.at

Project page https://michaelramamonjisoa.github.io/projects/MonteBoxFinder

1 Supplementary Video

In addition to this supplementary document, we provide a supplementary video
showing progress through iterations for our method and compared baselines.

2 More on Cuboids

2.1 Constructing Cuboids from Pairs of Plane Segments

In this section, we provide more details regarding the construction of cuboids
given a pair of plane segments πA = (XA,NA) and πB = (XB ,NB).

Checking planes adjacency We recall that two planes (πA, πB) should be
considered for constructing a cuboid only if they fulfill two requirements: align-
ment and proximity.

Proximity Two plane segments are adjacent if they verify the proximity criterion,
which requires that they have at least one connected component, such that
min(ChamferDistance(XA → XB),ChamferDistance(XB → XA)) < γ, where γ
is a small 3D distance.

Alignment Two plane segments πA = (XA,NA) and πB = (XB ,NB) are aligned
if they are either “orthogonal enough” or “co-linear enough”; This corresponds
to |NT

ANB | < α or |NT
ANB | > β, respectively, where α << 1 and β ≲ 1.

In our experiments we set (α, β, γ) = (0.3, 0.7, 0.05m).

Getting cuboids main axes We can now construct two orthonormal bases
BA = (uA,vA,wA) and BB = (uB ,vB ,wB) of vectors using Gram-Schmidt
orthonormalization with NA or NB as the first vector alternatively, as shown in
Equations (1a) and (1b).

2 M. Ramamonjisoa et al.

uA :=
NA

∥NA∥2

vA := NB −
uT
ANB

∥NB∥2
uA

vA ←
vA

∥vA∥2
wA := uA × vA,

(1a)

uB :=
NB

∥NB∥2

vB := NA −
uT
BNA

∥NA∥2
uB

vB ←
vB

∥vB∥2
wB := uB × vB ,

(1b)

Computing the final cuboids Based on the two cuboids bases, we compute
their sizes by simply projecting all 3D points X ∈ XA ∪XB and computing the
minimum and maximum of the projections along each axes of BA and BB . This
results in two bounding boxes aligned with BA and BB respectively, which both
enclose all points in XA ∪XB .

2.2 Computing Intersections with isCompatible

In order to check compatibility between cuboids s1 and s2, we design a variation
of an Intersection-over-Union criterion, replacing the Union with the volume
of the smallest cuboid between s1 and s2. In order to compute the volume of
the intersection, we approximate volumes by sampling points in both s1 and
s2 and counting points that are inside both. Full details of the procedure used
in isCompatible are given in Algorithm 1. In practice we use an intersection
threshold η = 10%.

3 More About our Baselines

3.1 The Hill-Climbing Algorithm

The Hill-Climbing algorithm [1] is a naive greedy descent algorithm that con-
structs a solution iteratively, where at each iteration, it comprehensively searches
for the proposal that best improves the objective function of a solution SF , while
leaving the solution valid i.e. with no incompatibilities. If no proposal is available
nor can improve the objective function, the algorithm stops ×. A pseudo-code
for the Hill-Climbing algorithm is provided in Algorithm 2.

Sub-optimal solutions In practice, Hill-Climbing leads to sub-optimal solutions
where the algorithm gets stuck into a local minimum. This is because the al-
gorithm first greedily fits large regions of the scene, therefore employing large
Cuboid ; This makes a lot of potentially good cuboids unavailable, as they would
intersect with that large Cuboid .

MonteBoxFinder 3

Algorithm 1: The isCompatible function

procedure isCompatible(s1, S, η)
Result: Returns True if Cuboid s1 is compatible with all Cuboid in S
Input : Cuboids Cuboid S, threshold η
if (∀s2 ∈ S, IntersectionOverVolume(s1,s2)> η) then

return False ;
return True ;

procedure IntersectionOverVolume(s1, s2)
Input : Cuboids s1 and s2
Volume of Cuboid s1 V1 := Volume(s1)
Volume of Cuboid s1 V2 := Volume(s2)
Number of samples Nsamples := 5000;
Number of samples from s1 in s2 N1⊂2 := 0;
Number of samples from s2 in s1 N2⊂1 := 0;
// Sample 3D points within both cuboids s1 and s2
X1 := sample points inside(s1, N) ;
X2 := sample points inside(s2, N) ;
// Count points sampled in s1 which are also inside s2
for (x ∈ X1) {

if x ∈ s2 then
N1⊂2 ← N1⊂2 + 1;

// Count points sampled in s2 which are also inside s1
for (x ∈ X2) {

if x ∈ s1 then
N2⊂1 ← N2⊂1 + 1;

// Compute approximation of the intersection volume

Intersection :=
V1 ·N2⊂1 + V2 ·N1⊂2

2Nsamples
;

return
Intersection

min(V1, V2)
;

Sub-optimality of evaluations Hill-climbing has to evaluate the complete objec-
tive function each time it considers a primitive, which is particularly costly
at the beginning of the algorithm where the solution SF is still empty, since no
Cuboid candidate would intersect with it. After selecting a large Cuboid , the set
of available, i.e. compatible cuboids gets dramatically reduced, hence resulting
in an acceleration of the search of Hill-Climbing as shown in Figure 4 of main
paper, which however converges to sub-optimal solutions. In contrast, MCTS
and our algorithm evaluate the objective function only at the end of an iteration
when a complete solution is complete.

3.2 Binary-Tree MCTS

In our non-binary tree adaptation of MCTS, the search algorithm spends many
iterations on iterating the first levels of the tree which might contain many,
mutually incompatible, primitives. Therefore, this can limit the exploitation ca-

4 M. Ramamonjisoa et al.

Algorithm 2: Hill-climbing algorithm

Result: Set of selected Cuboid SF
Input: Set of proposal Cuboid S;
Threshold η ;
Final solution SF := ∅;
Current best loss ℓ∗ := +∞ ;
Current best Cuboid s∗ := ∅;
Set of available Cuboid SA := S;
Evaluations counter Neval := 0;

while SA ̸= ∅ do
s∗ ← ∅;
for (s ∈ SA) {

if s.isCompatible(sf , η) then
SF .add(s);
ℓ← evalObjFunc(SF);
Neval ← Neval + 1;
if ℓ < ℓ∗ then

ℓ∗ ← ℓ;
s∗ ← s;

SF .remove(s);

else
SA.remove(s);

SF .add(s∗);
return SF , Neval

pabilities of MCTS as the algorithm prioritizes nodes that have not been visited
yet. In our binary-tree adaptation of MCTS, every level of the tree corresponds
to selecting or skipping a primitive. The resulting tree structure, hence, trades
tree-breadth for tree-depth, which enables better exploitation. However, due to
a large depth of the tree, MCTS does not explore solutions in the bottom of the
tree, hence we observed only minor improvements over its non-binary adapta-
tion. We argue that our MonteBoxFinder method can be seen as an adaptive
version of binary-tree MCTS. In contrast to binary-tree MCTS, as we show in
Figure 1, the tree equivalent of our method is able to adapt its structure during
the search and enable better update mechanism leading to faster convergence.

4 More results

4.1 Qualitative results

We show more qualitative results in Figure 2.

4.2 Progress plots

We show more progress plots in Figure 3.

References

1. Skiena, S.: The Algorithm Design Manual. Springer (2010)

MonteBoxFinder 5

Binary-tree MCTS 2 iterations of our algorithm interpreted with a binary tree

Fig. 1. We observe that behavior of our algorithm can be interpreted as an adaptive
binary-tree MCTS, even though we do not explicitly define a tree structure. As MCTS
is bound by its tree structure, it will invest iterations into exploring primitives in the
upper part of the tree, even those with low confidence, visualized as colored bars.
Further more, as indicated with colored circles, MCTS models confidences of same
primitives in different parts of the tree independently. Blue circles indicate a selec-
tion path of a single MCTS iteration that fails to extract meaningful proposals due to
aforementioned difficulties. In contrast, our method sorts at each iteration primitives
according to their confidences µ1 and will focus more easily on more promising primi-
tives. In addition, as indicated by colored circles we only model a single confidence
per primitive. These features enable our method to converge faster to good solutions
in practice.

6 M. Ramamonjisoa et al.

Hill-climbing MCTS-Binary MonteBoxFinder (ours)

Fig. 2. Qualitative results. Hill-climbing often selects large cuboids that span across
multiple different objects. MCTS does better, but sometimes yields outliers (second
and fifth row). In contrast, our algorithm outperforms both methods and is able to
successfully reconstruct many more details.

MonteBoxFinder 7

Fig. 3. Samples of progress plots. Our method consistently outperforms its base-
lines, i.e. the Hill-Climbing algorithm and MCTS, as it converges faster to a better
solution. These plots correspond to the scene examples in Figure 2

