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In this supplementary material, we present our results on the Tanks& Temples
Advanced subset in Sec. 1 and describe depth map fusion in detail in Sec. 2. We
provide details about cost volume regularization of the Cas-MVSNet backbone
and implicit volume construction of our rendering consistency network in Sec. 3.
We also show additional depth map prediction and point cloud reconstruction
results in Sec. 4. Furthermore, we provide an ablation study on number of sam-
pled rendering rays in Sec. 5. Finally, we discuss training strategy of pseudo label
based multi-stage self-training and end-to-end unsupervised training in Sec. 6.

1 Performance on Tanks&Temples Advanced Benchmark

We train the proposed RC-MVSNet on the DTU training set, and test on the
Tanks& Temples Advanced dataset without finetuning. We compare our method
to state-of-the-art supervised [3,6,8,11], pseudo-label-based multi-stage self-
supervised method U-MVSNet [7]. Table 1 shows the evaluation results on the
advanced subset. Our RC-MVSNet is the first end-to-end unsupervised method
on advanced subset of Tanks&Temples. We achieve comparable performance to
the multi-stage self-supervised method [7] and supervised methods [3, 6]. We also
outperform supervised method CIDER [8] by +7.7 (33%) and R-MVSNet [11]
by

2 Depth Map Fusion

After obtaining depth maps through RC-MVSNet, we need to convert them
into 3D point clouds through depth map fusion for further evaluation. Following
MVSNet [10] and R-MVSNet [11], we use geometric consistency and photometric
consistency to remove occlusions and unreliable regions. Geometric consistency
projects depth maps of source images into the reference image and masks out
depth-inconsistency regions. To unify point cloud representation, we compute
the average depth value of the consistent region. As for photometric consistency,
we directly use the confidence maps generated by RC-MVSNet and only keep
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the regions with high confidence. Finally, we re-project the pixels that satisfy ge-
ometric consistency and photometric consistency to the world coordinate system
to generate point clouds.
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Fig. 1. Qualitative comparison of point cloud reconstructions on DTU.

3 Cost Volume and Implicit Neural Volume

Arbitrary fully-supervised MVS network could be used as our backbone in our
framework — we use CasMVSNet [3] as default backbone. The 2D CNN extract
latent features from NV input views. Then the features from the N —1 source views
are reprojected into the reference view via differential homography warping, as
following:
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Table 1. Point cloud evaluation results on the advanced subset of Tanks&Temples
dataset [4]. Higher scores are better. The Mean is the average score of all scenes. The
sections are partitioned into supervised, multi-stage self-supervised and end-to-end
unsupervised, respectively. The best result is highlighted in bold for each section.

Tanks& Temples advanced

Method Meant Auditorium? Ballroom? Courtroom? Museum? Palacet Templet
CIDER (8] 23.12 12.77 24.94 25.01 33.64 19.18  23.15
Supervised R-MVSNet [11] 24.91 12.55 29.09 25.06 38.68 19.14  24.96
CasMVSNet (3] 31.12 19.81 38.46 29.10 43.87 27.36  28.11
PatchmatchNet [6] 32.31 23.69 37.73 30.04 41.80 28.31 32.29
Multi-Stage Self-sup. U-MVSNet [7] 30.97 22.79 35.39 28.90 36.70 28.77 33.25
E2E Unsup. RC-MVSNet 30.82 21.72 37.22 28.62 37.37 27.88 32.09

where H,(d) denote the homography between the feature maps of the j(2 <
j < N) view and the reference feature map at depth d. The camera intrinsics K,
rotations R; and ¢; are also given according to jt* view respectively. nq refers to
the principle axis of the reference camera. The variance of these feature maps are
calculated to construct a cost volume, which is regularized by 3D CNNs in each
stage of the cascade structure. After the 3D convolutions, a pixel-wise depth
map is regressed with soft-argmax upon the depth dimension of the probability
volume.

For the reference volume V; of reference image I; and warped volume {V; }j\;Q

of source images {I; };VZQ, the cost volume C' in the backbone for depth estimation
was constructed by Eq. 1. in our paper. This variance volume contains image
appearance information and camera poses across all input views. However this
volume is used for geometry reconstruction of depth inference, specifically for
the reference view. We expect to use the information from only source views to
synthesize the reference view. Hence, we calculate the variance volume C/ from
warped volume {VJ};\;2 by:

N )
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C'=Var (Va, - ,Vy) =

where Var denotes the same calculation and V;- is the mean of warped volumes.
In this way, we aggregate the information across N — 1 source views construct
the implicit neural volume.

4 Additional Qualitative Results

4.1 Depth Map Visualization on DTU Benchmark

Fig. 2 provides visualization of depth map of scans 4, 9, 10, 29 and 75 of DTU
benchmark [1].
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(a) Image (b) Depth Prediction (c) Filtered Depth (d) Ground Truth

Fig. 2. Visualization of the prediction and filtered depth maps.
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4.2 Point Cloud Visualization on DTU Benchmark

Fig. 1 provides additional reconstruction visualization on DTU benchmark][1].
Our unsupervised model shows significant improvement compared to previous
state-of-the-arts, and achieves comparable reconstruction results to the super-
vised approach Cas-MVSNet[3].

4.3 Point Cloud Visualization on Tanks&Temples Benchmark

Fig. 3 visualizes additional point cloud reconstruction results on Tanks& Temples
benchmark. Our method produces accurate and complete reconstructions. +5.91

(24%).

Fig. 3. Qualitative results of point cloud reconstructed on Tanks&Temples.

5 Additional Ablation Study

Number of sampled rays for reference view synthesis Due to limited
memory usage, we're not able to render complete depth maps and images during
training times. Following common setting [2, 5], we only sampled a subset of
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Table 2. Performance at different number of sampled rays during volumetric rendering

Numjays‘ Accl Compl OveralLL‘Train Mem‘Train Img Size‘Test Mem‘Test Img Size

256 |0.404 0.296 0.350 | 14.6 GB | 640 x512 | 7.5 GB | 1600 x 1152
1024 |0.396 0.295 0.345 | 155 GB | 640 x 512 | 7.5 GB | 1600 x 1152
|
|

4096 0.400 0.299 0.350 | 183 GB | 640 x512 | 7.5 GB | 1600 x 1152
8192 [0.395 0.300 0.348 | 233 GB | 640x512 | 7.5GB | 1600 x 1152

rays during the volumetric rendering process. The performance of using different
number of sampled rays is shown in Table. 2.

6 Discussion

As we described in the paper, multi-stage self-supervised methods suffer from
complicated pre-training and pre-processing. The limitation of training time
makes it difficult for these methods to be applied in practical scenarios. Ac-
cording to U-MVSNet [7], the pretraining of PWC-Net on DTU[1] and whole
self-supervision training stage take 16 epochs in total. Then the post-training
based on generated pseudo label takes further 16 epochs. We use the same back-
bone as them and it only takes 15 epochs to converge with 6 hours per epoch on
NVIDIA RTX 3090. For self-supervised CVP-MVSNet [9], the self-training takes
15 hours per epoch on NVIDIA RTX 2080Ti. Hence, improving the efficiency of
previous learning-based methods, both running time and memory usage, while
maintaining comparable performance with self-supervised and supervised ones,
can be regarded as one of our method’s advantages.
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