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1 Implementation Details

1.1 Training parameters

We implemented our models using PyTorch, with distributed training across
eight A100 GPUs. We used grid search to choose training parameters, that in-
clude: view synthesis weight A = 5.0, virtual camera loss weight A\, = 0.5, vir-
tual camera projection noise o, = 0.25, canonical jittering noise o, = o, = 0.1,
and batch size b = 32 (4 per GPU). We use the AdamW optimizer [5], with
standard parameters 3; = 0.9, B2 = 0.999, a weight decay of w = 1074, and an
initial learning rate of Ir = 2-10~%. For our stereo experiments, we train for 200
epochs, halving the learning rate every 80 epochs. For our video experiments, we
train for 100 epochs, halving the learning rate every 40 epochs. Higher-resolution
fine-tuning is performed for 50 epochs for stereo experiments, and 10 epochs for
video experiments, with Ir =2 - 1075,

1.2 Architecture Details

Following recent work [9], we use K, = 20 and K, = 10 as the number of Fourier
frequencies for camera embeddings, with maximum resolution u, = p, = 60.
Our encoder embeddings have dimensionality C. = 960 + 186 = 1146, due to
the use of both image and camera information. Our decoder embeddings have
dimensionality Cy = 186, since only camera information is required to produce
estimates. Our latent representation R is of dimensionality 2048 x 512. Input
images are resized to 128 x 192, and following standard protocol [8] output depth
maps are compared to ground-truth resized to 480 x 640. We use the following
hyperparameters for our Perceiver IO implementation: 1 block, 1 input cross-
attention, 8 self-attention layers (with 8 heads) and 1 output cross-attention.
Cross attention layers have only 1 head. We found that larger Perceiver 10
models (i.e., with more blocks, number of heads, and self-/cross-attention layers)
did not improve results and significantly increased training time. The latest
developments in the Perceiver architecture [1] could be used to further improve
performance and inference speed, and will be considered in future work.

* Denotes equal contribution.
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No.om 0.lm 0.2m 0.5m
Train

0.0m 0.101 0.202 0.226 0.291
0.1m 0.097 0.160 0.184 0.242

Table 1: Effects of canonical jittering at train and test time. The model
trained with canonical jittering (o; = o, = 0.1m) not only performs better when
evaluated at the target location (0 = o, = 0.0m), but is also more robust to
different levels of canonical jittering at test time. The results shown are average
Abs. Rel. of the two predicted stereo depths maps, without ground-truth scaling.

2 Canonical Jittering Test-time Ablation

In Section 4.3 of the main text, we ablate the effects of using our proposed
data augmentation techniques, designed to improve multi-view consistency in the
learned latent representation. In Figure 4b we provide an additional experiment
in which we vary the amount of virtual camera noise o, at train and test time,
and show that training at higher noise levels not only improves depth estimation
performance at the target location (up to a certain value, of o, = 0.25m), but
also when decoding estimates from novel viewpoints.

Here we perform a similar experiment targeting another proposed data aug-
mentation technique: canonical jittering. Two different models were trained, with
and without canonical jittering, and both were evaluated under different noise
levels at test time. Note that, while this augmentation does not change scene
geometry, it changes the camera embeddings used for encoding and decoding
information. Results are presented in Table 1. As we can see, the model trained
with canonical jittering not only performs better when evaluating at the target
location, but is also more robust to increasing levels of noise at test time.

3 Higher Resolution Fine-Tuning

One of the main challenges of training Transformer-based architectures has been
the O(N?) self-attention memory scaling with input size. This means that the
resolution of recent models has been fairly limited (e.g. the view synthesis model
of Sajjadi et al. [7] primarily trains on low-resolution images, with a highest
resolution of 128 x 176), hindering their application to real-world scenes. Per-
ceiver 10 decouples input resolution from the the learned latent representation,
which enables training and real-time inference at higher resolutions [9]. In our
experiments, we found it advantageous to train using a resolution curriculum,
first at a lower resolution (128 x 192), and then fine-tune at a higher resolu-
tion (240 x 320). Note that, because the camera parameters are also scaled to
the proper resolution, the scene geometry does not change, only (a) the num-
ber of embeddings generated per camera, and (b) the image embeddings, since
resolution changes image features. Thus, training at lower resolutions enables
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Fig.1: Qualitative comparison of DeFiNe relative to the IIB [9] baseline.
Our architecture improves depth estimation quality in (i) smooth and textureless
areas, (ii) far away regions, and (iii) image boundaries and depth discontinuities.

the faster learning of our desired multi-view latent scene representation, which
can then be fine-tuned at higher resolutions for further improvements. As an
alternative, we also experimented with the strategy of sampling rays at higher
resolution (similar to NeRF [6] and SRT [7]). However, we found that this ap-
proach led to unstable training and longer convergence times. As future work,
we plan to investigate how training and and inference can be scaled up to even
higher resolutions.

4 Comparison to 11B

IIB [9] is a recently proposed stereo depth estimation method that also uses
a Perceiver 10-based architecture. Their major contribution is a geometrically-
motivated epipolar inductive bias to encourage multi-view consistency. In Table 1
and Figure 4 of the main text, we show that our DeFiNe architecture significantly
improves over the IIB baseline on the ScanNet-Stereo benchmark (0.116 vs. 0.089
Abs. Rel.). Given that code and pre-trained models to replicate the IIB results
are not available, we trained a model following the instructions in [9], achieving
similar performance as reported in the paper.

Some qualitative examples from this model are depicted in Figure 1, as well
as examples from our DeFiNe architecture. As we can see, our proposed 3D aug-
mentations and joint view synthesis learning also lead to significant qualitative
improvements over IIB results. In particular, we consistently perform better in
smooth and textureless areas, as well as far away regions and depth disconti-
nuities. We attribute this behavior to an increase in scene diversity due to our
contributions, that enables the learning of a more consistent multi-view latent
scene representation.
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Timestep | -4 -3 -2 -1 0 +1 +2 43 +4
% valid pixels | 77.7 685 626 59.5 58.2 58.7 61.2 66.6 75.9
Monodepth2 [2] 0.325 0.336 0.346 0.354 0.361 0.359 0.354 0.347 0.338
PackNet [3] 0.305 0.318 0.330 0.341 0.344 0.344 0.336 0.327 0.338
BTS [4] 0.296 0.306 0.320 0.329 0.334 0.326 0.327 0.319 0.303
DeFiNe (projection) | 0.226 0.239 0.251 0.259 0.268 0.261 0.254 0.244 0.231
DeFiNe (query) 0.222 0.230 0.237 0.240 0.242 0.246 0.245 0.240 0.231

DeFiNe (query, all) ‘0.361 0.381 0.398 0.408 0.412 0.413 0.406 0.390 0.369

(a) Depth interpolation results. Frames at {¢ — 5,¢ + 5} are encoded, and depth

maps corresponding to camera locations at {t — 4,...,t + 4} are decoded.

Timestep ‘ 0 1 2 3 4 5 6 7 8

% wvalid pixels ‘ 91.0 76.1 64.5 559 49.6 452 420 39.5 36.0
Monodepth2 [2] 0.351 0.386 0.398 0.405 0.412 0.420 0.431 0.441 0.453
PackNet [3] 0.327 0.358 0.378 0.391 0.400 0.406 0.420 0.428 0.436
BTS [4] 0.315 0.331 0.357 0.377 0.392 0.401 0.413 0.424 0.429
DeFiNe (projection) | 0.258 0.276 0.288 0.298 0.311 0.323 0.331 0.340 0.348
DeFiNe (query) 0.237 0.260 0.271 0.280 0.289 0.298 0.307 0.317 0.326

DeFiNe (query, all) ‘0.326 0.370 0.405 0.438 0.468 0.495 0.520 0.543 0.563

(b) Depth extrapolation results. Frames at {t —5,...,t—1} are encoded, and depth
maps corresponding to camera locations at {¢,...,¢+ 8} are decoded.

Table 2: Depth interpolation and extrapolation results, on ScanNet (com-
plementary to Figures 7a and 7b of the main text). On valid projected pixels,
DeFiNe (query) outperforms the explicit projection of all considered single-frame
baselines, and it also outperforms the explicit projection of its own estimates,
obtained from encoded views (projection). Furthermore, it also enables the esti-
mation of dense depth maps from novel viewpoints, which can be compared to
the corresponding ground-truth from that location (query, all).

5 Depth from Novel Viewpoints

In Table 2 we provide numerical values to complement our depth interpolation
and extrapolation experiments (Figures 7a and 7b from the main text). These
experiments show that querying from our learned latent representation improves
over the explicit projection of information from encoded views, while also en-
abling the estimation of dense depth maps from novel viewpoints. Similarly, in
Figure 2 we provide additional qualitative examples of depth extrapolation to
future timesteps, showing how DeFiNe can reconstruct unseen portions of the
environment in a geometrically-consistent way.
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Fig.2: ScanNet depth extrapolation examples, using DeFiNe. In each ex-
ample, image and camera information from frames at [t —5,...,t—1] is encoded,
and depth maps corresponding to camera locations at [t,...,t + 8] are decoded,
using only camera information. For each timestep, we show sparse projected
ground-truth depth maps (third row), and dense predicted depth maps (fourth
row). Our DeFiNe architecture is able to extrapolate from encoded information
to fill in missing parts of the scene.
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