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1 Additional Experiments

While we propose a principled way of estimating the relative pose from SIFT corre-
spondence, there are possible approximations that are often used in the literature. When
having SIFT orientations and scales, affine correspondence-based solvers are not appli-
cable directly. However, they can be approximated in each image as Ai = RiSi where
Ri ∈ SO(2) rotates by the SIFT orientation and Si ∈ R2×2 scales by the feature size,
where i ∈ [1, 2] is the image index. Another often used approximation is converting the
SIFT features to point correspondences [6].

We ran fundamental matrix estimation on KITTI and PhotoTourism using the TIP
solver from [6], and the affine solver from [2] on the generated point correspondences
and approximated affine features, respectively. Similarly as for the experiments in the
main paper, we ran the methods on KITTI using multiple frame differences, i.e., 1, 2 and
4. The average rotation (ϵR) and translation errors (ϵt), the number of inliers, run-times
in milliseconds and number of iterations are shown in Table 1.

PhotoTourism KITTI

ϵR ϵt # inliers time (ms) # iters ϵR ϵt # inliers time (ms) # iters

Proposed 2.1 6.7 267 48.8 4189 2.7 2.2 1676 67.3 304

SIFT-to-1AC 5.9 12.5 239 236.4 4845 2.7 2.3 1676 56.9 152
SIFT-to-2PC 2.3 7.5 262 208.7 4264 2.8 3.1 1652 93.7 363

PC-based 2.3 7.8 268 127.3 7145 2.7 2.3 1677 154.4 1860
Table 1. The average rotation (ϵR) and translation errors (ϵt) in degrees, the number of inliers
(# inliers), run-times in milliseconds and number of iterations (# iters) on the KITTI and Photo-
Tourism datasets. The compared methods are the proposed one, the method approximating affine
correspondences (ACs) from the SIFT features and applying the AC-based solver from [2], the
method converting the SIFT features to point correspondences (PCs) by [6], and the standard 7
PC-based solver.
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On KITTI, the differences are small due to the dataset being easy. Still, the proposed
solver leads to the best results and it is the second fastest by being marginally slower
than [2] that uses fewer matches. On PhotoTourism, as it is a challenging dataset with di-
verse camera motions, the SIFT-to-1AC [2] and SIFT-to-2PC [6] approximations do not
work as well as on KITTI. The AC-based method fails completely on PhotoTourism.
The solver from [6] is marginally better than the PC-based approach but it is signifi-
cantly slower. The proposed solver is the fastest by a large margin while also being the
most accurate method.

2 Constraints Relating Elements of A and SIFT Parameters

In the main paper, in Section 3.1, we discussed constraints relating elements of the ma-
trix A and SIFT parameters. The first set of constraints was derived from the decom-
position of A as the multiplication of the Jacobians of the projection functions w.r.t.
the image directions in the two images. These equations have, after simplification, the
following form (Eq. (11) in the main paper):

a1 = c2c1qu − c2s1w + s2s1qv,

a2 = c2s1qu + c2c1w − s2c1qv,

a3 = s2c1qu − s2s1w − c2s1qv,

a4 = s2s1qu + s2c1w + c2c1qv,

(1)

where the unknowns are the affine parameters a1, a2, a3, a4, scales qu, qv and shear w.
Angles α1 and α2 are known from the SIFT features and ci = cos(αi) and si = sin(αi).

In addition to these constraints, there are two more constraints relating SIFT param-
eters and A. First, the uniform scales of the SIFT features are proportional to the area
of the underlying image region and, therefore, the scale change provides constraint (Eq.
(12) in the main paper):

detA = det
(

R2URT
1

)
= detU = quqv =

q22
q21

, (2)

where q1 and q2 are the SIFT scales in the two images. Second, the oriented circles
centered on the point correspondence provide an additional constraint of the form (Eq.
(13) in the main paper):

q1A

[
cos(α1)

sin(α1)

]
= q2

[
cos(α2)

sin(α2)

]
. (3)

The constraints (2) and (3) can be rewritten as

a2a3 − a1a4 + q2 = 0, (4)
a3c1 + a4s1 − s2q = 0, (5)
a1c1 + a2s1 − c2q = 0, (6)

where q = q2
q1

.
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Here, we show that constraints (4)-(6) constitute all constraints that relate the el-
ements of A and the measured orientations αi and scales qi, i = 1, 2 of the features
in the first and second image. In other words, equations (1) are not adding any ad-
ditional constraints relating the elements of A and the measured orientations αi and
scales qi, i = 1, 2 to constraints (4)-(6).

To prove this, we first define the ideal I [3] generated by polynomials (1),(2),(3) and
trigonometric identities c2i + s2i = 1 for i ∈ {1, 2}. To transform (2) to a polynomial
equation, we substitute q = q2

q1
and add a constraint q1q−q2 = 0 to the ideal. Moreover,

we ensure q1 ̸= 0 by saturating the ideal with q1
3. Note that here we consider all ele-

ments of these polynomials, including q, qi, ci and si, as unknowns. Then we compute
the generators of the elimination ideal I1 = I ∩ C[a1, a2, a3, a4, q, s1, c1, s2, c2] [3].
The generators of I1 do not contain qu, qv and w and, instead, of q1 and q2 they directly
contain q = q2

q1
. These generators are exactly equations (4)-(6) together with trigono-

metric identities c2i + s2i = 1 for i ∈ {1, 2}. This means that constraints (1) do not add
any additional information and the elimination ideal is directly generated by (2) and (3),
or equivalently by (4)-(6)4. Generators (4)-(6) can be computed using a computer alge-
bra system, e.g., Macaulay2 [4]. The input code for Macaulay2 is included in the
supplementary material as a separate constraints A SIFT.m2 file.

On the other hand, the constraints (1) and (2) that were used for derivations in [1],
are not covering all constraints that relate the elements of A and the measured orienta-
tions αi and scales qi, i = 1, 2. This can be easily proved. By eliminating qu, qv and
w from the ideal generated by (1), (2) and trigonometric identities c2i + s2i = 1 for
i ∈ {1, 2}, using the elimination ideal technique [5]5, we obtain two generators of the
elimination ideal. One generator is directly (4), i.e. the constraint (2), and the second
one has the form

c1s2a1 + s1s2a2 − c1c2a3 − c2s1a4 = 0. (7)

The constraints (4) and (7) are constraints proposed in [1]

The constraint (7) is a linear combination of constraints (5) and (6) with coefficients
−c2 and s2. This means that if (5) and (6) vanish also (7) vanishes. However, the op-
posite is not true. If (7) vanishes the constraints (5) and (6) do not need to vanish. This
means that the constraints derived in [1], i.e., constraints (4) and (7), do not cover all
constraints that relate the elements of A and the measured orientations αi and scales
qi, i = 1, 2. For deriving all constraints, the constraint (3) is important.

3 Note that geometrically q1 ̸= 0 and q2 ̸= 0, but algebraically it is sufficient to remove solutions
q1 = 0 by saturating the ideal with q1. Saturating the ideal with both q1 and q2 will not affect
the solutions.

4 Note that for correct derivations, all steps including saturation and adding trigonometric iden-
tities to the ideal are important.

5 Note, that here we again substitute q = q2
q1

, add the constraint q1q − q2 = 0 to the ideal, and
saturate the ideal with q1.
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3 SIFT Epipolar Constraint

In the main paper, in Section 3.2., we derived a new constraint relating epipolar geome-
try and the measured orientations αi and scales qi, i = 1, 2 of covariant features in the
first and second image. For this purpose, we used elimination ideal technique [5]. The
input code for Macaulay2 used to compute this constraint, i.e., the generator of the
elimination ideal J1 is provided as a separate Macaulay2 constraint F SIFT.m2 file.
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