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In this supplementary document we present additional details on our pro-
posed methodology and experimental results for joint Kalman smoothing and
registration of time series graphs.

1 MEVA Dataset

The real-world dataset we used to evaluate our framework, MEVA was briefly
introduced in the manuscript. Here, we present further details on it and its
pre-processing.

1.1 Dataset

The Multiview Extended Video with Activities (MEVA) [7] is a large-scale
dataset for human activity recognition. It consists of over 9300 hours (untrimmed
and continuous) of scripted scenarios and spontaneous background activities
from indoor and outdoor viewpoints. The dataset offers video data from 38 RGB
and thermal IR cameras, as well as UAV footage. For our experiments, we use
a scene from an indoor bus station where the actors are continuously moving in
and out of the camera field of view while performing different activities. The bus
station scene is 5 minutes long, sampled at 30 FPS (9000 frames). The MEVA
dataset contains 79 different videos for the bus stop location, out of which 51
have no actors. We have chosen the video with the highest number of moving
actors (24); including actors entering and exiting the scene.

1.2 Preprocessing

Object Detection We preprocess each frame to construct a graph, where each
node is a person detection and their node embeddings represent visual features.
More formally, given a set of frames X = {x1, . . . , xn}, where xi ∈ RH,W,C and n
is the number of frames in the video, we apply a pretrained object detector (De-
tection Transformer (DeTR) [5]) on each frame resulting in a set of detections
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Fig. 1: Preprocessing pipeline. A pretrained object detector is used to detect hu-
mans in the scene and extract their visual features. Detections O are used to
construct an undirected graph G. Homography transformation is applied to ap-
proximate the relative distances between detections, which are used to construct
the affinity matrix.

O = {o1, . . . , on}. The input image xi ∈ RH,W,C is transformed to a feature
grid x′

i ∈ Rh,w,D by using a CNN backbone. Positional encoding is added to
the features before flattening the 2D grid into a set of feature vectors. A trans-
former encoder processes the feature vectors and outputs a set of feature vectors
of the same size as the input set. The transformer decoder is initialized with
a fixed number of learned positional encodings (object queries) and attends to
the output of the transformer encoder. A shared Feed Forward Network (FFN)
is attached to each object query allowing the model to classify each detection
and regress its location. Hungarian matching loss is applied between the two
sets (queries and groundtruth). We extract the visual features vector fi for ev-
ery detection oi from the output of the transformer decoder (before the FFN).
Finally, each detection is represented by oi = (ai, si, fi), where ai, si, fi denotes
the object class, spatial location, and visual features vector, respectively.

Graph Construction We use the detection results to model interactions and
activity in the scene as an undirected graph G = (V,E), where V = {vi, . . . , vn}
represents the nodes and E ∈ R|V |×|V | represents the edges. Each node vi is
a unique detection oi ∈ O, where the node embeddings are the features vector
fi extracted from the last layer of the transformer decoder. We filter the nodes
by applying Non-max suppression on the detections, followed by dropping low
confidence detections. Only person detection are used in our experiments.

Homography Transformation The edges eij ∈ E are constructed by calcu-
lating the relative distances between detections. We approximate the relative
distances between nodes by calculating the homography transformation matrix
H ∈ R3×3 to transform the input camera view to a top view. Geometric clues,
such as floor tiles, are used for approximating the homography transformation.
Each detection location si is pre-multiplied by the homography matrix H to
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calculate the location from the top view. The distances between the top view
locations are normalized and used to construct the affinity matrix for graph G.

1.3 Related Papers

Trajectory Modelling and Prediction
* TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild
[3]
* STGAT: Modeling Spatial-Temporal Interactions for Human Trajectory
Prediction [9]
* The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dy-
namic Spatiotemporal Graphs [10]
* Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and
Graph Attention Networks [12]
* Trajectron++: Dynamically-Feasible Trajectory Forecasting With Hetero-
geneous Data [18]
* Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural
Network for Human Trajectory Prediction [15]
* GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [21]
Video Object Segmentation
* Video Object Segmentation with Episodic Graph Memory Networks [14]
* Zero-Shot Video Object Segmentation via Attentive Graph Neural Net-
works [22]
Tracking
* Learning a Neural Solver for Multiple Object Tracking [4]
* Graph Networks for Multiple Object Tracking [13]
* Joint object detection and multi-object tracking with graph neural net-
works [23]
* GNN3DMOT: Graph Neural Network for 3D Multi-Object Tracking with
Multi-Feature Learning [24]
Pattern Theory
* Generating Open World Descriptions of Video using Commonsense Knowl-
edge in a Pattern Theory Framework [2]
* Going Deeper with Semantics: Exploiting Semantic Contextualization for
Interpretation of Human Activity in Videos [1]

2 Registration of Ground Truth to Estimated Graphs
(MEVA Dataset)

For the real-world evaluation, the estimation errors reported in section 5.4 in the
manuscript are computed against a ground truth series {xt} that was generated
manually. In this series the nodes (subjects) are ordered arbitrarily. Hence, before
computing the L2 norm of the difference between the estimated graph x̂t and
the ground truth xt we include a graph matching step. Every xt is registered to



4 A. B. Bal et al.

its corresponding x̂t using the same graph matching algorithm [8] we used to
register the {yt} series. Our estimation error is dependent on the accuracy of
this graph matching step. If nodes of xt and x̂t are registered incorrectly, we end
up reporting higher estimation error than there actually is.

3 Definition of Missed and False Detections

The graph matching algorithm we employ in our framework allows the registra-
tion of real or actual nodes in one graph to null nodes in the other. Null nodes
are dummy nodes added to graphs G1 = (V1, E1) and G2 = (V2, E2) before
graph matching to make them of the same size (|V1| + |V2|) and to facilitate
optimal registration over a larger search space. Their attributes are generally set
to zeros denoting null values. Assuming we obtained fully accurate registration
between xt and x̂t, when a real node present in xt is matched to a null node in
x̂t, the node is a missed detection. This means that this subject is present in the
scene but is undetected. Conversely, when a real node present in x̂t is matched
to a null node in xt, the node is a false/noisy detection. This may mean that
there is no subject in the scene and yet something is detected in the observation.
Another possibility is that a subject is present in the scene but is detected mul-
tiple times. As a result, a node in x̂t denoting one of these multiple detections
will be matched to the real node denoting this subject in xt while the rest of
the detections are matched to null nodes in xt. The latter detections are the
false/noisy detections. An example of this scenario is in Fig. 10 (bottom left) in
the manuscript. Node 8 and node 14 in yt (coral) are double detections of the
same subject and their estimates in x̂t are shown in green. One of them, node
14, is matched to the real node corresponding to this subject in the ground truth
xt (blue). Node 8, therefore, counts as a false detection.

4 Missed and False Detections for Synthetic Datasets 1
and 2

The rates of missed and false detections in Synthetic Datasets 1 and 2 were not
specifically reported in the manuscript. The reasons are addressed here:

4.1 Synthetic Dataset 1

In this datatset, we simulate the ideal observation setting where the observations
are not degraded by clutter or missed detections. Moreover, this dataset assumes
that no subject leaves the scene and no new subject enters it. Consequently, the
time series graphs demonstrating this ideal scenario have the same number of
nodes from the initiation of time till the end and they are perfectly registered
across xt , yt and x̂t. As a result, there are no missed or false detections in this
case.
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4.2 Synthetic Dataset 2

In this dataset, we first generate a series of fully connected graphs {xt}. To sim-
ulate missed detections or the entry/exit of a subject in the scene, 2-3 nodes in
xt are removed at randomly chosen time points t spaced out over t = 0, 1, 2, .., T ,
generating the observed series {yt}. We then register {yt} sequentially as de-
scribed in Algorithm 1 in the manuscript. The registration obtained at this step
turned out to be very successful, i.e., the null nodes in yt corresponding to the
nodes (subjects) missed in the observation were matched with the right nodes
(subjects) observed in yt−1. These null nodes in yt were then assigned real node
status in x̂t, demonstrating an important contribution of our framework where
a subject that failed to be detected at time t is retrieved through accurate graph
matching with the previous time point t − 1 where this subject was, in fact,
detected. In our dataset with controlled noise and detection failures, the regis-
tration turned out to be 100% accurate for all time points, all missed detections
were retrieved in x̂t in the above-mentioned manner. Therefore, once again, there
are no missed or false detections in this evaluation.

5 Estimation Errors for Alternative Models (MEVA
Dataset)

Due to limited availability of space in the manuscript, we were unable to include
a comparative report on the mean and standard deviation of estimation errors
in the real-world evaluation using various models including our Joint Kalman
Smoother and Registration and other alternatives. We present these in Table 1.
The three data columns refer to three short segments of the full 5-minute video
sequence under consideration. Clip 1 refers to time points t = 0− 500, Clip 2 to
t = 0−1000 and Clip 3 to t = 782−1200. Each of these clips cover specific events
of interest such as a subject entering the bus station and walking across the room
or taking a seat. These errors are measured for the last 100 time points in each
set, while the rest are used for model training (in the alternative approaches).
Our Kalman-Smoother with registration exhibits lower errors in estimating the
location and tracking of subjects than the alternative models. It should also be
noted that our method functions online and does not require training. Further-
more, our proposed method can retrieve and track subjects that were undetected
at certain time points as well as identify noisy/multiple detections thereby over-
coming several limitations in computer-vision based object detections in video
sequences.

6 Combined Node Attribute for Real-world Evaluation

For evaluation of our proposed method on real-world data, we briefly mention
the utilization of a combination of several node attributes to aid the registration
of the observed series {yt}. We combine “(a) top-view node position coordinates
obtained from homography transformation of the input camera view, (b) eight
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Approach
Clip 1 Clip 2 Clip 3

Prediction Errors Prediction Errors Prediction Errors
Nodes Edges Nodes Edges Nodes Edges

Multi-Epoch Training

1-Step FFN 1.045 1.518 0.961 1.286 1.022 1.373
±0.133 ±0.210 ±0.119 ±0.167 ±0.136 ±0.490

RNN 1.005 1.015 1.014 1.011 1.087 1.007
±0.046 ±0.008 ±0.040 ±0.007 ±0.023 ±0.005

GRU 1.002 1.022 1.008 1.014 1.084 1.003
±0.045 ±0.011 ±0.045 ±0.008 ±0.021 ±0.002

Seq2Seq-RNN 1.050 1.004 1.052 1.007 1.100 1.004
±0.020 ±0.004 ±0.020 ±0.008 ±0.000 ±0.001

Seq2Seq-GRU 0.973 1.018 0.989 1.012 1.054 1.009
±0.043 ±0.012 ±0.046 ±0.010 ±0.042 ±0.007

Transformer 1.096 1.095 0.970 1.166 1.049 1.291
±0.024 ±0.021 ±0.014 ±0.026 ±0.039 ±0.018

Online Training

RNN 1.018 1.049 1.002 1.046 1.027 1.037
±0.027 ±0.015 ±0.039 ±0.005 ±0.013 ±0.011

GRU 1.011 1.039 0.998 1.043 1.024 1.034
±0.036 ±0.009 ±0.033 ±0.008 ±0.019 ±0.015

Kalman Filter 0.324 1.305 0.519 1.595 0.244 1.350
±0.064 ±0.122 ±0.132 ±0.274 ±0.063 ±0.324

Kalman Smoother 0.321 1.297 0.529 1.631 0.253 1.360
±0.085 ±0.124 ±0.115 ±0.295 ±0.078 ±0.303

Static Prediction

Median Filter 0.555 1.322 0.528 1.375 0.554 1.292
±0.197 ±0.160 ±0.253 ±0.299 ±0.201 ±0.328

Table 1: Quantitative evaluation on Video Clips 1, 2 and 3 from MEVA dataset.
Table reports mean and std. deviation of the L2 errors, for edge and node esti-
mates.
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principal components of the 256 length node embeddings explaining 85.3% of the
variation, and (c) four coordinates of the bounding box of the detected subject,
resulting in a m = 14-length attribute vector for each node”. Further details on
this node attribute are as follows:

– The choice of this combination was a result of several comparative exper-
iments. We wanted to retain both visual and spatial information to best
describe the nodes. The said combination of node attributes led to better
sequential registration in comparison to any other individual or combination
of these attributes.

– The values of node embeddings, the node position coordinates and the
bounding box coordinates belong to different ranges by orders of magni-
tude. Therefore we normalize the entire m = 14-length attribute vector for
each node in every graph across {yt}.

7 Videos of Time Series Graphs

We generated videos using the corresponding time series graphs for the datasets
used in this paper showing 5 frames per second. Due to space constraint we
include only two of the videos in this supplementary, Synthetic2.avi (first 50
time points) and MEVAClip1.avi denoting Synthetic Dataset 2 and a part of
Clip 1 of the MEVA bus station dataset respectively. In each of the videos, the
blue, coral and green graphs denote the system xt, the observation yt and the
estimate x̂t respectively. We observed that our proposed framework offers very
accurate estimates of the system graphs in the synthetic datasets, where the x̂t

almost coincide with the xt at each t. In the case of real-world data, our model
estimates the ground truth with high precision in most scenes with less movement
among the subjects while recovering objects that failed to be detected. However,
the entry of a new subject into the scene, and its movement, often disrupts
the registration temporarily among nodes across {yt}. Nevertheless, the model
quickly recovers from this disturbance within a few time points and proceeds
to show precise edge and node estimations for all subjects including the ones
moving across the frame.

8 Comparison with GNNs and Past Papers

Our problem setup requires several tools – graph-based representations, time-
series analysis, graph registration, handling missing/spurious nodes, and per-
forming joint (nodes + edges) inferences. This framework allows us to handle
variable graph structures over time, not only in terms of node and edge values but
also in graph sizes. (If needed, a GNN can be added downstream to our process-
ing for classification.) Our paper brings together all these tools and applies it to
noisy detections from videos. While previous papers (refs in [25,20,16,17,19,6,11]
and others) can handle some of these challenges, there is no paper that handles
all these issues simultaneously. For instance, some GNNs for node registration
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don’t allow for unmatched nodes (using null nodes as we do) to handle vari-
able graph sizes. Most GNN-based time-series papers assume that graphs are
pre-registered in time. Furthermore, our formulation is on the manifold of all
graphs, i.e., each point in this manifold is a graph, while in a typical geomet-
ric GNN one considers individual graphs as representing manifolds and a point
there is a node in the graph.

9 Practicality of the Approach and Time Complexity

The quotient-space formulation for graphs is theoretically sound and computa-
tionally efficient. To give an idea, the full detection pre-processing cost for MEVA
dataset is about 0.307 sec/frame. After detection, the total cost for tracking
around 15-node graphs over 1000 frames (≈ 33.33 sec video length) is 69 sec,
i.e., 0.069 sec/frame. The graph registration at every frame is the main cost
(≈ 28% of total time) in the current implementation. We can further improve
speed by mixing the (slower Umayama-based) quadratic assignment with the
(much faster Hungarian-based) linear assignment for graph registration. A sim-
ilar strategy can be applied to fast moving (use Umeyama) versus slow moving
(use Hungarian) objects in the scene.
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