Differentiable Raycasting for Self-supervised
Occupancy Forecasting

Supplementary Material

In this supplement, we discuss more details of our experimental setup in
Sec. A, discuss supplementary evaluation of occupancy forecasting in Sec. B and
analyse the quantitative and qualitative performance of our motion planning
architecture further in Sec. C.

A Experimental Setup

A.1 Network Architecture

Architecture Implementation We use the same neural network architecture as
proposed by Zeng et al. [6] and developed on by Hu et al. [4]. Different from
these two networks, we use two decoders, one that predicts the emergent occu-
pancy cost maps, and one that predicts the residual cost maps. The differentiable
raycaster proposed by us acts as a layer over the occupancy cost maps, that pro-
duces raycast sweeps for 7 future timesteps (accounting for three seconds in the
future).

Freespace is computed from these sweeps and it is used in 3 places in the net-
work: (1) in computing a dense per-pixel classification loss with the groundtruth
freespace, (2) in computing the final cost maps which are a sum of the freespace
and the residual cost maps, and (3) in computation of the cost margin for the
planning loss.

Input and output We follow the same input and output BEV data format as
that used in Hu et al. [4] for nuScenes, except that we now take input from [-2s,
0s]. For nuScenes, this means 20 input timestamps and a stack of 704 x 400 x 20
size. For ONCE, since the LiDAR sweeps are collected at 2Hz, this stack is of
size 704 x 400 x 5 to accomodate 2s of input data. The output of the network
for both the datasets is of size 704 x 400 x 7 to account for 3s of forecasts at
a 0.5s interval, starting at the Oth timestep. Each pixel in the BEV map covers
an area of 0.2m x 0.2m. To compute groundtruth freespace cost maps, we apply
ground segmentation [4,3] to the output LiDAR sweep and raycast as described
in the main paper.

Differentiable raycaster First, we collect a set of rays, with origin as the position
of the ego-vehicle in the world coordinate frame and endpoints as the endpoints
in a groundtruth LiDAR sweep. For a given ray (origin and direction), we find the
voxels that the ray travels in the BEV LiDAR scan using a fast voxel traversal
algorithm proposed by Amanatides et al.[l]. Given all the voxels along a ray,
we perform a soft raycast along the ray as follows: we sample occupancy states



2 T. Khurana™, P. Hu*, A. Dave, J. Ziglar, D. Held, D. Ramanan

given the predicted occupancy probabilities, raycast to get free vs occluded space,
and average the raycasts over all samples. In practice, we do this analytically
by computing the expectation, as done by many prior works based on volume
rendering [5].

A.2 Data-driven sampler

Following prior work that uses data-driven trajectory sampling techniques for
evaluating the performance in mapless driving scenarios [2], we curate a dataset
of expert trajectories by binning the trajectories in the train set by their velocity.
Once this dataset is curated during preprocessing, we use retrieval based on the
past timestep’s speed and direction profiles to index into the appropriate bin in
the dataset. When a velocity is not available in the set of data-driven trajectories,
we compute the nearest speed and angle from the set, for a given sample. From
this nearest bin, we randomly sample 200 valid trajectories and append them to
our set of 2000 model-based trajectories.

Fig. 1. Distribution of train trajectories in nuScenes (left) and ONCE (right).

This approach avoids arbitrary choice of steering profiles for the ONCE
dataset, since this information in unknown in ONCE (note that this is available
for nuScenes with the CAN bus data). This is useful because in comparison to
nuScenes, the ONCE dataset is composed of a complementary set of trajectories,
as shown in Fig. 1. Using this data-driven trajectory sampler in conjunction with
the standard trajectory sampler gives us a complete coverage of possible future
trajectories, including the ones that appear the most in the ONCE dataset.

B Occupancy Forecasting

We supplement the evaluation of occupancy forecasting on ONCE and nuScenes
in the main paper by providing complete results of Fig. 7 in Tab. 1. The unlabeled



Differentiable Raycasting for Self-supervised Occupancy Forecasting 3

Dataset ~ Size 959l(})) BCE (J) F1(1) AP (1)

2,000 0.336 0.109 0.649  0.776
ONCE 4,000 0.260 0.102 0.711  0.814
8,000 0.243 0.097 0.787 0.827

2,000 0.598 0.246 0.376  0.493

ONCE 4,000 0.589 0.236 0.384  0.502
(unlabeled) 8,000 0.553 0.200 0.460  0.553
22,000 0.536 0.200 0.466  0.576

86,000 0.513 0.174 0.495 0.607

2,000 0.299 0.184 0.726  0.804
4,000 0.280 0.169 0.749  0.826
nuScenes 8,000 0.261 0.157 0.761  0.843
16,000 0.244 0.148 0.774  0.859
22,000 0.242 0.140 0.777 0.863

Table 1. Supplementary table for the evaluation of occupancy forecasting on ONCE-
val and nuScenes-val with models trained on different subsets of the ONCE labeled,
unlabeled and nuScenes train set.

subsets of ONCE do not include samples from the labeled train set. As described,
increasing the amount of training data directly impacts the improvement in
performance. It is worth noting the performance difference between the 8k set
of ONCE-labeled and ONCE-unlabeled. The higher metrics on the labeled set
indicates that the ONCE labeled set is much higher quality and falls in the same
data distribution as compared to the val set. nuScenes training subsets also show
increasing performance with increase in data.

C DMotion Planning

C.1 Planning on ONCE

Quantitative Analysis This section supplements our results on the ONCE dataset
from the main paper. We show the complete results of Fig. 12 in Tab. 4. Note
that as the amount of data is increased during training, the L2 error and box
collision rate decreases dramatically. Even though box collision rate is a stricter
metric than point collision rate, we see a consistent trend in it at the longest
horizon. Our best model beats the neural motion planner [6] baseline described
in the main paper. Note that such a baseline can only be trained with the labeled
training set of ONCE (with 8K samples), whereas all the raw unlabelled LiDAR,
logs in ONCE can be used by our method since it is self-supervised.

We also conduct an ablative study of our approach on the ONCE dataset in
Tab. 3. Note that since the hyperparameters are not tuned for the ONCE dataset,
the best performing method on the Box Collision metric at 3s horizon is by Hu
et al. [1]. Intuitively, this difference in performance shows that the trajectories



4 T. Khurana™, P. Hu*, A. Dave, J. Ziglar, D. Held, D. Ramanan

Training L2 Error (m) Point Collision (%) Box Collision (%)
size 1s 25 3s 1s  2s 3s 1s  2s 3s
8,000 0.84 2.26 4.45 0.00 0.04 1.06 0.04 0.14 254

2,000 1.97 4.37 818 0.07 0.39 1.84 0.77 2.36 5.05
4,000 1.13 2.79 533 0.00 0.04 1.02 0.14 0.81 3.43
8,000 1.00 2.33 4.43 0.00 0.04 0.74 0.04 0.28 2.79
22,000 0.71 1.87 3.62 0.00 0.14 1.06 0.04 0.39 2.65
94,000 0.56 1.49 2.90 0.00 0.04 0.99 0.00 0.39 2.47

Table 2. Planning metrics at different amount of training data on ONCE-val. First
row corresponds to our reimplementation of the neural motion planner [6] baseline
described in the main paper.

Cost Mid Diff. L2 Distance (m) Point Collision (%) Box Collision (%)
Margin Task Raycast 1s 2s 3s 1s  2s 3s 1s  2s 3s
- - 0.61 1.64 3.33 0.00 0.00 1.02 0.00 0.42 2.47

(a)

N !

(b) - - 0.80 2.12 4.15 0.00 0.00 0.78 0.00 0.18 1.84
(c) - v - 0.89 2.40 4.78 0.00 0.04 1.63 0.00 0.35 3.85
d Vv v - 0.90 249 4.99 0.00 0.04 1.10 0.07 0.25 2.61
(e) vV v v 1.00 2.33 4.43 0.00 0.04 0.74 0.04 0.28 2.79

Table 3. Ablation studies on ONCE. Note that (a) is IL, (b) is FF, and (e) is Ours.

selected by our planner pass close to the objects in the environment, such that
they incur a box collision but not point collision. This is expected as even though
we outperform Hu et al. [1] on occupancy forecasting, the guided planning loss
used optimizes for point collision by summing per way-point occupancy cost
instead of box collision, on which we outperform all other methods at 3s horizon.

Qualitative Analysis (Videos) We show a qualitative result of our approach in
result.mp4 which is a video version of one of the qualitative results in the main
paper. The video first shows the input to our network, followed by a visualization
of the predicted future emergent/latent occupancy and the sweep raycast
differentiably from this occupancy (referred to as ds in Eq. 5 in the main paper).
Finally, we show the total cost maps, which are a sum of the occupancy and
residual cost maps and the final output trajectory.

Additionally, we show two examples of the evolution of predicted emergent
occupancy. In the first visual in evolutionl.mp4, note how a straight moving
car’s possible future locations evolve with time. Similarly for a car turning right
at an intersection in evolution2.mp4, notice how the multiple possible futures
of the car grow into a triangular blob, indicating that according to the occupancy
probability, the car could have moved at any angle, either moving straight across
the intersection or turning right.



Differentiable Raycasting for Self-supervised Occupancy Forecasting 5

Training L2 Error (m) Point Collision (%) Box Collision (%)
size 1s 2s 3s 1s  2s 3s 1s  2s 3s
nuScenes - 0.76 1.61 3.23 0.00 0.00 0.15 0.04 0.15 0.98

2,000 2.10 4.39 7.74 0.00 0.25 1.45 0.32 194 4.80
4,000 1.09 2.73 5.15 0.00 0.04 0.99 0.07 0.53 3.28
ONCE 8,000 0.87 2.24 4.32 0.00 0.00 0.78 0.04 0.25 2.37
22,000 0.71 192 3.74 0.00 0.28 1.02 0.07 0.67 2.65
94,000 0.50 1.32 2.61 0.00 0.04 0.71 0.00 0.21 1.94

Dataset

Table 4. Evaluation of planning metrics on nuScenes and ONCE by adding the occu-
pancy cost maps to residual cost maps during training.

C.2 Ablations on training architecture

While we compute the predicted cost margin in the main paper by summing
the egocentric-freespace cost maps with the residual cost maps for an apples-
to-apples comparison with Hu et al.[41], a more natural training architecture for
motion planning would sum up the occupancy and residual cost maps during
training, similar to the test-time architecture. Such an architecture would com-
pute egocentric-freespace only for self-supervision with the multi-task loss and
use the occupancy cost maps for motion planning. In Tab. 4, we evaluate training
with this ablated architecture. Note that since the occupancy cost maps are now
optimized directly during training, the performance across all metrics increases.

C.3 Limitations

We highlight a few limitations of our work. First, our self-supervised emergent
occupancy does not offer semantics (e.g., traffic light and lane information) that
is crucial for urban navigation. Despite this, we show that learning to drive with
future occupancy is a safe fallback option in industrial autonomous driving. Sec-
ond, BEV occupancy by itself does not handle overhead structures (e.g., trees,
overpass); this may be mitigated by learning which occupied voxels are ‘passable’
during differentiable raycasting. Third, we rely on open-loop evaluation, where
the world (incorrectly) unfolds in the same manner as the expert trajectory. Al-
though this can be corrected in a closed-loop setup, with our work we show that
optimizing for collision metrics, with or without L2 error, can act as a proxy
for learning to drive safe in real-world. Fourth, our method assumes accurate
ego-motion during training but does not require it at test time. Finally, as the
supplementary video highlights, our occupancy estimates diffuse over time, cap-
turing multiple futures. However, we posit that future occupancy can be made
more robust by constraining it with scene flow.



6

T. Khurana™, P. Hu*, A. Dave, J. Ziglar, D. Held, D. Ramanan

References

. Amanatides, J., Woo, A.: A Fast Voxel Traversal Algorithm for Ray

Tracing. In: EG 1987-Technical Papers. Eurographics Association (1987).
https://doi.org/10.2312/egtp.19871000 1

Casas, S., Sadat, A., Urtasun, R.: Mp3: A unified model to map, perceive, predict
and plan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 14403-14412 (2021) 2

Himmelsbach, M., Hundelshausen, F.V., Wuensche, H.J.: Fast segmentation of 3d
point clouds for ground vehicles. In: Intelligent Vehicles Symposium (IV), 2010
IEEE. pp. 560-565. IEEE (2010) 1

. Hu, P., Huang, A., Dolan, J., Held, D., Ramanan, D.: Safe local motion planning

with self-supervised freespace forecasting. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 12732-12741 (2021) 1, 3,
4,5

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.:
Nerf: Representing scenes as neural radiance fields for view synthesis. In: European
conference on computer vision. pp. 405—421. Springer (2020) 2

Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S., Urtasun, R.: End-to-end
interpretable neural motion planner. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 8660-8669 (2019) 1, 3, 4


https://doi.org/10.2312/egtp.19871000

	Differentiable Raycasting for Self-supervised Occupancy Forecasting

