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In this supplement, we provide the implementation details and the additional
experimental results. First, we provide the training and adaptation details used
in our experiments, and the network configuration of PointFixNet. To demon-
strate the effectiveness of PointFix, we extend the experiments, including the
convergence analysis, synthetic to synthetic scenarios, qualitative results and ad-
ditional ablation studies, in the following section. The videos for the predicted
disparity sequence (2011 09 30 drive 0027 sync of the KITTI [3] dataset) and
the 3D reconstruction from the predicted disparity are provided in .mp4 format.
Please refer our video supplementary files (‘Sim-to-Real.zip’).

1 Implementation Details

Additional datasets. In this section, we introduce datasets used to conduct
the additional experiments, including comparisons with domain generalization
approaches in the main paper and synthetic to synthetic adaptation in this doc-
ument. Specifically, we use the SceneFlow [5] dataset to train the models evalu-
ated on comparisons with domain generalization methods [12, 8]. The SceneFlow
is a synthetic dataset and contains 39,000 stereo frames with 960 × 540 pixel
resolution. We use the FlyingThings3D (F3D) [5] dataset, which is one of the
subsets of the SceneFlow dataset, only to train the models for the experiments
in this supplement. In addition, we use the Virtual KITTI 2 [2] dataset as a test
benchmark in Sec. 2.2, that contains photo-realistic and synthetic stereo images
recreated from the KITTI [4] dataset. This dataset consists of 5 separate scenes
corresponding to different locations and each scene is transformed to represent
6 different weather and lighting conditions (i.e., clone, fog, morning, overcast,
rain, and sunset) for the same scene. Therefore, we use a total of 30 sequences
for short-, mid-, and long-term adaptation. Each sequence consists of at least
233 frames and frame resolution is 1242 × 375.

Training. In our experiments, we use TensorFlow library [1] and a single
NVIDIA RTX A6000 48GB for training and NVIDIA TITAN RTX 24GB for
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inference. For the short-term experiment in the main paper, the test images of
DrivingStereo [11] dataset are rescaled into 703×320 for disparity range. For
such a reason, we resize whole images in Synthia [7] dataset to half resolution
as in [9]. All of initial parameters of base models are pretrained on the F3D
dataset which is a synthetic dataset provided from [5]. Unless specified, we used
the Synthia [7] dataset to train the base model with our method. For our model
that uses the DispNetC [5] as the base network, we set the inner loop learning
rates α and the outer loop learning rate β to 10−4 during the first 40k iterations,
and α = 10−5 and β = 10−4 for the last 10k iterations. For the model that uses
the MADNet [10] as the base network, we use α = 10−5 and β = 10−4 during
30k iterations, respectively.

Online adaptation. At inference, the parameters of the base network are
continuously updated with the reconstruction loss. For models trained on Syn-
thia [7], we set the adaptation learning rate to 10−4 for their best performance.
For our model with the MADNet as the base network, the learning rate for
short-term adaptation is set to 10−4 and 10−5 is given for the mid-term and
long-term Full adaptation experiments. For models trained on the F3D [5] or
SceneFlow [5], we set the adaptation learning rate to 10−5 and 10−4 for the Full
adaptation and MAD adaptation, respectively.

We compute the reconstruction loss differently according to the base network
and the adaptation method due to the different structures of the network and
the adaptation strategy. Specifically, the reconstruction loss for the DispNet [5]
is computed on the final predicted disparity map following [9]. The MADNet [10]
with Full adaptation computes the reconstruction loss for all disparity maps at
every single module, while a single disparity map is chosen for the reconstruction
loss with the MAD adaptation by the strategy proposed in [10].

Network architecture. As described in the main paper, our PointFixNet con-
sists of two main modules: a feature extraction module and a point-wise predic-
tion module. We depict the network configuration using the DispNetC [5] and the
MADNet [10] as the base network in Table 1 and Table 2, respectively. The fea-
ture extraction module consists of three convolutional layers and the point-wise
prediction module contains four fully-connected (FC) layers. Such lightweight
model-agnostic architecture enables PointFixNet to be applied regardless of the
base network and makes the base network maintain inference speed.
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Table 1. Network configuration using DispNetC [5] as the base network.

DispNetC

Layer Ch I/O Input Output

conv1 3 / 64 Il, Ir feat1l,r

conv2 64 / 128 feat1l,r f l,r

conv redir 128 / 64 f l feat redir

corr 128 / 81 f l,r c
conv 3a 145 / 256 c, feat redir feat3a
conv 3b 256 / 256 feat3a feat3b
conv 4a 256 / 512 feat3b feat4a
conv 4b 512 / 512 feat4a feat4b
conv 5a 512 / 512 feat4b feat5a
conv 5b 512 / 512 feat5a feat5b
conv 6a 512 / 1024 feat5b feat6a
conv 6b 1024 / 1024 feat6a feat6b
pr6+loss6 1024 / 1 ifeat6 pr6
upconv5 1024 / 512 feat6b upfeat5
iconv5 1024 / 512 upfeat5,pr6,feat5b ifeat5
pr5+loss5 512 / 1 ifeat5 pr5
upconv4 512 / 256 feat5b upfeat4
iconv4 769 / 256 upfeat4,pr5,feat4b ifeat4
pr4+loss4 256 / 1 ifeat4 pr4
upconv3 256 / 128 feat4b upfeat4
iconv3 385 / 128 upfeat3,pr4,feat3b ifeat3
pr3+loss3 128 / 1 ifeat3 pr3
upconv2 128 / 64 feat3b upfeat2

iconv2 193 / 64 upfeat2,pr3, f l ifeat2
pr2+loss2 64 / 1 ifeat2 pr2
upconv1 64 / 32 feat2b upfeat1
iconv1 97 / 32 upfeat1,pr2,feat1b ifeat1
pr1+loss1 32 / 1 ifeat1 pr1

PointFixNet: Feature Extraction Module

Layer Ch I/O Input Output

conv1 5 / 32 Il, d̂, d z1

conv2 32 / 64 z1 z2

conv3 64 / 128 z2 zc

PointFixNet: Point-wise Prediction Module

Layer Ch I/O Input Output

concat. 64, 81 / 145 c, f l zb

concat. 145, 128 / 273 zb, zc Π(zb, zc)

FC1 273 / 273 Π(zb, zc)ij x1
ij

FC2 273 / 273 x1
ij x2

ij

FC3 273 / 273 x2
ij x3

ij

FC4 273 / 1 x3
ij rij
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Table 2. Network configuration using MADNet [10] as the base network.

MADNet: Feature Extractor

Layer Ch I/O Input Output

conv1 3 / 16 Il, Ir feat0
conv2 16 / 16 feat1 feat1
conv3 16 / 32 feat1 feat1 1

conv4 32 / 32 feat1 1 feat2(f)
conv5 32 / 64 feat2 feat2 1

conv6 64 / 64 feat2 1 feat3
conv7 64 / 96 feat3 feat3 1

conv8 96 / 96 feat3 1 feat4
conv9 96 / 128 feat4 feat4 1

conv10 128 / 128 feat4 1 feat5
conv11 128 / 192 feat5 feat5 1

conv12 192 / 192 feat5 1 feat6
MADNet: Stereo Estimation network

Layer Ch I/O Input Output

conv1 C / 128 Dn+1, feat
l,r
n featSE1

conv2 128 / 128 featSE1 featSE2
conv3 128 / 96 featSE2 featSE3
conv4 96 / 64 featSE3 featSE4
conv5 64 / 32 featSE4 featSE5
conv6 32 / 1 featSE5 Dn

MADNet: Residual Refinement network

Layer Ch I/O Input Output

conv1 C / 128 featln, D
∗
n featR1

conv2 128 / 128 featR1 featR2
conv3 128 / 128 featR2 featR3
conv4 128 / 96 featR3 featR4
conv4 96 / 64 featR4 featR5
conv5 64 / 32 featR5 featR6
conv6 32 / 1 featR6 Rn

PointFixNet: Feature Extraction Module

Layer Ch I/O Input Output

conv1 5 / 32 Il, d̂, d z1

conv2 32 / 64 z1 z2

conv3 64 / 128 z2 zc

PointFixNet: Point-wise Prediction Module

Layer Ch I/O Input Output

corr. 32, 32 / 81 f l,r c

concat. 32, 81 / 113 c, f l zb

concat. 113, 128 / 241 zb, zc Π(zb, zc)

FC1 241 / 241 Π(zb, zc)ij x1
ij

FC2 241 / 241 x1
ij x2

ij

FC3 241 / 241 x2
ij x3

ij

FC4 241 / 1 x3
ij rij
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2 Additional Results

To show the superiority of our model, we further provide experimental results.
In Sec. 2.1, we first analyze the performance convergence of our PointFix and
previous works [9, 10] by expanding experiments shown in Sec. 5.2 of the main
paper. We also evaluate the online adaptation performance on the synthetic-to-
synthetic adaptation setting using the F3D [5], Virtual KITTI [2] and Synthia [7]
datasets in Sec. 2.2. Finally, we provide additional qualitative results in Sec. 2.3,
including the qualitative comparisons with the online adaptation methods [9, 10]
and domain generalization methods [12, 8] on the KITTI [3] dataset.

2.1 Convergence Analysis

Short-term adaptation. To prove the incomparable stability of our method,
we display the adaptation performance over frames as contrasted with the pre-
vious methods [10] that stand on the DispNetC [5] in a sequence1 from the
KITTI [3] in Fig. 1. While Ours+Disp.-Full (blue) is slightly better than
L2A+Disp.-Full (red) using full sequence for adaptation, the superior quality
of the initial parameters of the base network using PointFix is presented in the
comparison between L2A+Disp.-No (yellow) and Ours+Disp.-No (green).
The result shows PointFix is more robust against new environmental changes,
achieving better performance without the adaptation. Moreover, the method
with full adaptation shows almost similar performance to Disp.-GT (gray)
that is fine-tuned using the KITTI [4, 6] training sets. Note that the results
using MADNet as the base network are shown in Fig. 4 of the main paper.

Repetitive adaptation for single frame. Furthermore, our PointFix takes
advantage of the fast convergence. To validate the convergence speed, we re-
peatedly perform the adaptation for the first frame in a sequence2 from the
KITTI and record D1-all errors for each adaptation step according to the base
network. In Fig. 2(a), MAD.-No (green) and Ours+Mad.-No (brown) shows
the performance of the initial base parameters trained using [10] and our Point-
Fix. From each initial parameters, the drop rate of D1-all error represents the
convergence speed of the adaptation. With the large margin, Ours+Mad.-Full
(blue) achieves fast convergence and outperforms MAD.-Full (red) [10]. The
result of Ours+Mad.-MAD (purple) also shows fast convergence and low error
compared to MAD.-MAD (yellow). For DispNetC [5], we report the results on
a single frame with repetitive adaptation in Fig. 2(b). The comparison between
L2A+Disp.-Full (red) and Ours+Disp.-Full (blue) shows our PointFix con-
verges faster than L2A [9], exceeding the model fine-tuned on groundtruth (gray)
with only about 10 adaptation steps.

1 ‘2011 09 26 drive 101 sync’ sequence is used
2 ‘2011 09 28 drive 0034 sync’ sequence is used.
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Fig. 1. (a) D1-all error (%) across frames in the sequence (2011 09 26 drive 101 sync)
from the KITTI dataset with respect to the adaptation methods. (b) - (d) are input
left images at section showing high error and it seems due to sudden changes in frames.
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Fig. 2. Convergence analysis on a single frame with repetitive adaptation.

Repetitive adaptation for single sequence. To conduct sequence-level con-
vergence analysis, we perform repetitive adaptation on first 50 frames of the se-
quence3 from the KITTI dataset. As illustrated in Fig. 3, Ours+Mad.-MAD
(purple) and Ours+Mad.-Full (light blue) converge with a small number of
steps about 150 steps, while MAD.-MAD (yellow) and MAD.-Full (red) need
about 250 steps to converge.

3 ‘2011 09 28 drive 0039 sync’ sequence is used.
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Fig. 3. Convergence analysis on a single sequence ‘2011 09 28 drive 0039 sync’ with
repetitive adaptation.

Table 3. Short-term and long-term adaptation performance evaluated on the Syn-
thia [7] and Virtual KITTI 2 [2] datasets with models trained on the F3D [5] and
Synthia [7] datasets.

Method Adapt.
F3D → Synthia F3D → VKITTI2 Synthia → VKITTI2

Short-term Long-term Short-term Long-term Short-term Long-term
D1-all EPE D1-all EPE D1-all EPE D1-all EPE D1-all EPE D1-all EPE

MADNet No 48.49 20.86 48.00 20.39 47.91 17.62 47.13 17.09 46.95 13.36 42.29 9.30
Ours-MAD. No 29.97 5.00 29.96 5.01 27.33 3.19 26.50 3.15 28.96 4.93 27.02 3.93
MADNet Full 21.02 5.10 17.23 3.27 25.69 3.83 18.38 2.57 22.47 3.31 17.70 2.59
Ours-MAD. Full 18.12 2.97 14.03 2.67 21.61 2.72 18.06 2.56 18.27 2.42 17.73 2.50
MADNet MAD 19.98 4.12 18.20 3.58 23.90 3.12 18.55 2.62 29.29 5.53 18.66 2.55
Ours-MAD. MAD 22.55 4.03 18.27 3.48 21.49 2.78 17.49 2.49 16.90 2.24 18.11 2.47

2.2 Synthetic to Synthetic Adaptation.

To verify the general adaptability of the proposed method in various scenarios
that are not limited to synthetic-to-real, we further evaluate the performance
under the short-, mid-, and long-term adaptation settings on several synthetic
driving scene benchmarks. We present results according to the adaptation meth-
ods in Table 3 and Table 4.

In Table 3, we train the models on the F3D [5] or Synthia [7] datasets and
evaluate the short- and long-term adaptation performance on the Synthia [7]
or Virtual KITTI 2 [2] datasets. Note that each sequence for the short-term
adaptation is defined as a distinct sequence provided from each dataset (e.g.
SYNTHIA-SEQS-01-DAWN in the Synthia) and all frames are concatenated
into a single sequence for the long-term adaptation. The comparison between the
MADNet [10] and Ours-MAD. with No adaptation shows the initial parameters
of our PointFix are extremely powerful to the new domain in terms of D1-all error
and EPE on all datasets. The state-of-the-art performances using the adaptation
are attained by our method except for one metric (i.e., D1-all error of the long-
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Table 4. Mid-term adaptation on the Virtual KITTI 2 [2] with models trained on the
Synthia [7] dataset.

Method Adapt.
clone fog morning overcast rain sunset Avg.

D1-all EPE D1-all EPE D1-all EPE D1-all EPE D1-all EPE D1-all EPE D1-all EPE

MADNet No 33.25 7.90 69.62 14.57 33.86 7.60 34.25 7.92 48.38 9.72 34.39 8.07 42.29 9.30
Ours-MAD. No 23.16 3.42 32.71 4.65 25.50 3.92 24.07 3.53 31.78 4.43 24.88 3.65 27.02 3.93

MADNet Full 12.98 1.83 25.08 3.11 13.63 2.11 21.91 2.67 30.46 4.13 14.84 2.12 19.82 2.66
Ours-MAD. Full 14.69 2.05 24.16 3.00 13.25 2.10 20.23 2.63 27.92 3.92 14.54 2.20 19.13 2.65

MADNet MAD 19.32 2.58 32.03 4.03 16.56 2.33 23.74 2.92 30.79 4.26 18.96 2.44 23.57 3.09
Ours-MAD. MAD 12.74 1.71 23.48 2.95 12.69 1.88 14.85 1.85 25.63 3.17 13.10 1.82 17.08 2.23

term adaptation on Synthia→VKITTI2). The results evaluated on the Virtual
KITTI 2 dataset indicates that the performances are different according to the
training data. Since both the Synthia and Virtual KITTI 2 are driving scene
datasets, the higher performance can be obtained when the models are trained
on the Synthia than F3D.

To verify the robustness of our method under the mid-term adaptation set-
ting, we evaluate the performance on various weather or lighting conditions using
the Virtual KITTI 2 [2] dataset. Therefore, we provide the adaptation perfor-
mance according to 6 different conditions and averaged performance. As shown
in Table 4, our method consistently surpasses the baseline in all conditions, out-
performing the MADNet with a large margin. Although the performance on the
poor weather conditions (e.g. fog or rain) that have highly different pixel distri-
butions from the training data shows relatively high error, the proposed method
still outperforms the MADNet by 8.55% and 5.16% in terms of D1-all error, and
1.08 and 1.09 in terms of EPE for fog and rain sequences, respectively.

2.3 More qualitative results.

To argue the necessity of the online adaptation, we present the qualitative
results of the proposed method compared to domain generalization (DG) ap-
proaches [12, 8]. We evaluate state-of-the-art DG models [12, 8] for all frames in
the KITTI [3] dataset. In this experiment, we use the MADNet as the base net-
work and perform the long-term adaptation. Fig. 4-(a) shows the performance in
terms of D1-all error over all frames from the KITTI dataset. For the visibility
of the results, we depict the performance corresponding to the 13600 ∼ 15000th
frame. As shown in the figure, Ours-MAD. (green) achieves lower error rate
than DSMNet [12] (blue) and CFNet [8] (orange). In addition, we depict in-
put left frames showing high error rates on the DG methods, as shown in Fig.
4(b)-(d). Although the scene is not abruptly changed or the intensity of illu-
mination is not drastically changed, the DG methods often show remarkably
low performance compared with our method, which has stable performance in
overall frames. Thus, the fast inference speed and robust performance in novel
environments make our method more practical to real-world applications4.

4 Analysis for the inference speed is provided in the main paper.
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Fig. 4. (a) D1-all error (%) across frames in the consecutive sequences including
‘2011 09 26 drive 0086 sync’ (frames in (b) and (c)) and ‘2011 09 26 drive 0087 sync’
(frame in (d)) from the KITTI [3] dataset with respect to the adaptation methods. (b)
- (d) are input left images at section showing high error and it seems due to sudden
changes in frames.

In Fig. 5, we present more qualitative results evaluated on the sequence
from the KITTI dataset5 according to the base network and the adaptation
method. The results contain the quality of the initialized parameters(first col-
umn), fast adaptation (second column), and convergence to low errors (last col-
umn). For the comparison between methods with no adaptation (b)-(e), our
PointFix shows visually better results at the inner or boundary of objects re-
gardless of the base network. The comparison between the results in the second
column, L2A−Disp.Full (f), Ours−Disp.Full (h), Ours−MAD.Full (i),
andOurs−MAD.MAD (k) show the superior performance with only 50 adap-
tation steps. The results in the third column, our PointFix converges to the low
error, showing clear prediction on the inner and boundary of objects.

2.4 Additional ablation studies

Ablation study on PointFixNet. To further verify the effectiveness of Point-
FixNet, we ablate PointFixNet while keeping the point selection process. As
shown in Table 5(row 1), the model trained using the sparse loss without Point-
FixNet records the poor performance.

Ablation study on residual learning. We adopted residual learning to make
back-propagation flow through skip connection. The performance without resid-

5 ‘2011 09 28 drive 0018 sync’ sequence is used.
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Table 5. Ablation studies for various components. All results are obtained using Full
adaptation on short-term sequences.

Method D1-all EPE

No PointFixNet (w/ selection) 7.77 2.02
No residual learning 2.10 0.82
Point selection threshold 1 1.97 0.80
Point selection threshold 5 2.01 0.80
No online ML 5.53 1.13
Ours-MAD. 2.00 0.74

ual learning shown in Table 5(row 2) degrades slightly compared to model trained
with residual learning(row 6).

Ablation study on point selection threshold. We choose 3 pixels error as
threshold for point selection motivated by the bad3 metric. As shown in Table
5(row 3,4 and 6), the best performance in terms of EPE is attained with 3 pixels.

Ablation study on online meta-learning. We adopted online meta-learning
framework to jointly train PointFixNet and the base network. The performance
of offline meta-learning is shown in Table 5(row 5) indicating the advantage of
online meta-learning in our framework.
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Fig. 5. Disparity maps predicted using MADNet and DispNet as the base network
on the KITTI sequence [3]. (a) Input left images; predicted disparity with (b)-(e) no
adaptation; (f)-(i) full adaptation; and (j), (k) MAD adaptation.
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