
Style-Agnostic Reinforcement Learning
– Supplementary Material –

Juyong Lee ∗, Seokjun Ahn ∗, and Jaesik Park

Pohang University of Science and Technology (POSTECH), South Korea
{joy.lee, sdeveloper, jaesik.park}@postech.ac.kr

1 Implementation details

We explain the implementation details for both Procgen [1] and Distracting
Control Suite [14] benchmark. We reproduce all the baseline results on top of
implementation of PPO [6] for Procgen and implementation of SAC [15] for
Distracting Control Suite.

1.1 Hyperparameters

Procgen. The baselines compared with our SAR model are PPO [13], RAD [9],
UCB DrAC [12], Meta DrAC [12], MixStyle [16], and DARL [10]. We follow the
settings of Cobbe et al. [2] in Procgen; the encoder in the actor-network is based
on ResNet architecture [3], and the encoded features are shared to both actor
and critic networks. The encoder is composed of three layer-blocks, where one
layer-block is built with five convolutional layers with two skip connections. The
hyperparameters for the model and environments are well described in Table 1.

For PPO, the basic baseline model, we use generalized advantage estima-
tion [13] but no stacked observations [11].

For RAD, we apply the random translation and color cutout, where their
results are shown in Figure 1, as they are reported as the best [9].

For UCB DrAC and Meta DrAC, we follow the setting in [12].
For MixStyle, the style mixing is done once after the feature passes through

two layer-blocks, where the feature flow is divided into two branches in SAR.
For DARL, we not only follow the adaptive coefficient in gradient reversal

layer [10] but also control the effect of the domain adversarial loss with the
coefficient of d with the value reported in Table 1.

For SAR (Ours), we set the adversarial coefficients λ, λ′ to be equal, but
they can be optionally different. We perform a grid search to find the best
hyperparameter pairs and report them as indices (1)∼(3) for the adversarial
coefficient and (4)&(5) for the value similarity coefficient, where each index refers
to the task of:

• (1) starpilot, jumper, coinrun
• (2) climber, ninja, bigfish
• (3) maze, dodgeball
• (4) starpilot, ninja, coinrun
• (5) climber, jumper, maze, bigfish, dodgeball

https://orcid.org/0000-0002-8155-3998
https://orcid.org/0000-0002-3769-9965
https://orcid.org/0000-0001-5541-409X

2 J. Lee et al.

Distracting Control Suite We compare our SARmodel with SAC [4], CURL [8]
and DrQ [7] in Distracting Control Suite. The encoder network has 3 CNN lay-
ers with layer size 32 and kernel size 3. We set the stride of the first layer of
the encoder to 2 and the stride of the remaining layers to 1. The encoder net-
work is shared between actor and critic. In Table 2, we report the value of the
hyperparameters.

For SAC and CURL, we reproduce the results based on the implementation
in [15] and [8].

For DrQ, we apply the random translation as they are reported as the best [7].
We set the augmentation coefficients K=1 and M=1.

For SAR (Ours), we also set the adversarial coefficients λ, λ′ to be equal. We
search for the best hyperparameter pair using grid search and report them as
indices (1)&(2) for the adversarial coefficient and (3)&(4) for the value similarity
coefficient, where each index refers to the task of:

• (1) walker:walk, cartpole:balance
• (2) reacher:easy, cheetah:run
• (3) walker:walk, reacher:easy, cheetah:run
• (4) cartpole:balance

1.2 Visualization of images

Augmentation result in Procgen In our generalization performance exper-
iment in Procgen, especially for RAD, we use two data augmentation methods:
random translation and random color cutout. We show the results in Figure 1.

(a) (b) (c)

Fig. 1. (a) The original images, and augmentation results with (b) random translation
and (c) random color cutout, of coinrun in Procgen. These methods are only applied
to RAD in the generalization performance experiment. An additional experiment com-
paring SAR agents with and without these methods is conducted separately.

Style-Agnostic Reinforcement Learning 3

Distraction result in Distracting Control Suite. In Figure 2, we visualize
more diverse examples in Distracting Control Suite. The noises, referring to the
distractions we apply, are shifts of color, distortions in the camera angle, and
changing the background image into videos. Especially, the camera angle noise
intensity, i.e., βcam, in the main text refers to camera angle distraction intensity.

(b)

(c)

(d)

(e)

(a)

Fig. 2. Distracting environment examples of cartpole:balance task in Distracting
Control Suite. Row (a) shows the task with zero noise. Row (b) shows the task with
color shift βrgb = 0.5. Row (c) shows the with camera angle distraction βcam = 0.5.
Row (d) shows the task with changed backgrounds. Row (e) shows the task with color
shift βrgb = 0.5, camera angle distraction βcam = 0.5 and changed backgrounds.

4 J. Lee et al.

Hyperparameter Value

Input image resolution (64,64)

Discount factor γ 0.999

Generalized advantage estimates 0.95

timesteps per rollout 256

epochs per rollout 3

minibatches per epoch 8

Entropy bonus 0.01

PPO gradient clip range ϵ 0.2

Reward normlization yes

Learning rate 5e-4

workers 1

environments per worker 64

total timesteps 100M

Optimizer Adam

Recurrent neural network no

Frame stack k no

Regularization coefficient αr
0.1 (UCB DrAC,
Meta DrAC)

Exploration coefficient c 0.1 (UCB DrAC)

Sliding window size K 10 (UCB DrAC)

Domain loss coefficient d 0.9 (DARL)

Meta gradient clip range 100 (Meta DrAC)

Meta # train steps 1 (Meta DrAC)

Meta # test steps 1 (Meta DrAC)

Adversarial coefficient λ
0.1 (1);
0.01 (2);
0.001 (3)

Value similarity coefficient κ 1.0 (4);
0.1 (5)

Table 1. Hyperparameters for SAR (Ours) and baselines in the Procgen experiment.
The indices inside the parentheses for ‘adversarial coefficient’ and ‘value similarity
coefficient’ indicate that the different values are used in different tasks.

Style-Agnostic Reinforcement Learning 5

Hyperparameter Value

Input image resolution (84, 84)

Discount factor γ 0.99

Frame stack k 3

Random shift Up to 4 pixels

Action repeat
cartpole
finger
else

8
2
4

Episode length 1000

Replay buffer size 100000

Optimizer Adam

Learning rate
actor, critic, attacker
alpha

10−3

10−4

Encoder feature dimension 50

Target smoothing coefficient τ
actor
critic
alpha

0.05
0.01
0.5

Target update interval 2

Batch size 128

Latent dimension 128

Initial temperature 0.1

Initial steps 1000

Network update frequency
attacker, critic
actor

1
2

Adversarial coefficient λ 0.01 (1);
0.1 (2)

Value similarity coefficient κ 0.1 (3);
1.0 (4)

Table 2. Hyperparameters for SAR (Ours) and baselines in the Distracting Control
Suite experiment.

6 J. Lee et al.

2 Learning curves

We plot the learning curve of SAR agents and baselines in both Procgen and
Distracting Control Suite. For clear visualization, each graph is illustrated with
smoothing, following the settings of Cobbe et al. [2].

Procgen. Figure 3 shows the learning curves of models with the best perfor-
mances from each algorithm in the Procgen environment. We apply an exponen-
tial moving average smoothing with the smoothing coefficient value of 0.95.

Distracting Control Suite. Figure 4 and Figure 5 show the learning curves
of agents in Distracting Control Suite. In Distracting Control Suite, the training
environments do not present various styles, unlike Procgen. However, although
the SAR agents are not trained with a wide enough range of training envi-
ronments showing not the best performance in the training phase, they adapt
to distracting environments. They show the best performances in three out of
four tasks. Here, we apply exponential moving average smoothing only for the
training curve with the smoothing coefficient value of 0.99.

24

37

starpilot (training) 3

9

climber (training) 6

8

jumper (training) 4

8

ninja (training)

7

9

coinrun (training) 6

8

maze (training)
9

23

bigfish (training) 2

11

dodgeball (training)

21

33

starpilot (test)
3

7

climber (test) 4

6

jumper (test) 3

7

ninja (test)

0 4 8
1e7

6

8

coinrun (test)
0 4 8

1e7

3

6

maze (test)
0 4 8

1e7

5

16

bigfish (test)
0 4 8

1e7

3

10

dodgeball (test)

ppo rad(trans) rad(color) ucb_drac meta_drac mixstyle darl sar

Fig. 3. The learning curves of training and test in Procgen.

Style-Agnostic Reinforcement Learning 7

880

920

960

1000

cartpole_balance 0

150

300

450

cheetah_run

0 200000 400000
0

300

600

900

walker_walk
0 200000 400000

0

300

600

900

reacher_easy

SAC
CURL
DrQ
SAR

Fig. 4. The learning curves of training in Distracting Control Suite.

0

150

300

450

600

cartpole_balance
0

40

80

120

cheetah_run

0.0 0.1 0.2 0.3 0.4 0.50

100

200

300

400

walker_walk
0.0 0.1 0.2 0.3 0.4 0.50

80

160

240

reacher_easy

SAC
CURL
DrQ
SAR

Fig. 5. Evaluation performances with respect to various distraction scales in Distract-
ing Control Suite. βrgb and βcam are the same with x-axis distraction values. We use
4, 8 and 60 background videos in 0.1, 0.2 and >0.3 distraction values respectively. The
SAR agents show better generalization performances with stronger noises. The obser-
vation images in distracting environments are depicted in Figure 2.

3 Curriculum Learning

We conduct an experiment on curriculum learning in both Procgen and Dis-
tracting Control Suite benchmarks. As addressed by Ko & Ok[5], the timing for
the adoption of data augmentation may affect the test performance.

In Distracting Control Suite environment, while the SAR agents show no
better performance with zero noise setting than its baseline SAC [4], they get
improved on several tasks by adopting curriculum learning. The SAR agents also
show better performances in several tasks in Procgen with a warm-up stage.

8 J. Lee et al.

Procgen. The SAR agents are trained for 50M timesteps on Procgen with three
different start times for applying the adversarial loss: from the beginning, after
10M timesteps of warm-up, and after 25M timesteps of warm-up. The results
are averaged over three runs with different seeds.

Table 3. The generalization results on Procgen benchmark with different curriculum
learning. The best result in the final is bold, and the second result in the final is
underlined.

from start after 10M after 25M
at final at 10M at final at 25M at final

startpilot 27.6±7.9 27.6±7.9 30.7±5.3 21.4±4.1 34.0±13.9

climber 8.4±0.5 5.6±2.7 7.1±0.1 6.3±2.8 6.5±2.6

jumper 6.0±1.0 6.3±0.6 6.0±1.0 4.0±2.7 6.3±2.1

ninja 6.0±1.0 5.0±2.7 6.7±0.6 6.3±0.6 8.3±1.2

coinrun 7.7±0.6 7.7±0.6 7.0±1.0 8.3±1.2 8.3±0.6

maze 6.3±2.1 6.3±0.6 5.0±2.0 7.0±1.0 7.3±3.1

bigfish 6.6±1.0 1.6±0.6 12.3±5.4 3.3±3.5 8.9±0.1

dodgeball 2.1±1.8 0.5±0.3 2.1±2.5 1.4±0.7 3.4±2.3

Distracting Control Suite. The generalization results in Distracting Control
Suite with curriculum learning. The SAR agents have trained 500k timesteps
with applying the adversarial loss after 300k of warm-up. The results are aver-
aged over three runs with different seeds.

Table 4. The generalization results on Distracting Control Suite with curriculum learn-
ing. The best results are in bold.

SAR from start SAR after 300k

walker

:walk

zero noise 325±57 420±78
moderate 139±19 113±23
hard 112±15 88±20

cartpole

:balance

zero noise 990±5 996±2
moderate 266±26 249±10
hard 261±17 241±16

reacher

:easy

zero noise 177±51 211±33
moderate 98±13 85±19
hard 93±10 77±14

cheetah

:run

zero noise 304±80 277±47
moderate 49±11 57±16
hard 46±13 53±13

Style-Agnostic Reinforcement Learning 9

4 Learned Feature Analysis

Image reconstruction from embedded features. Figure 6 displays three
consecutive original frames and their corresponding reconstructed images with
embeddings from a trained SAR agent on two different levels of jumper in Proc-
gen. This well describes that the SAR agent is extracting style-agnostic repre-
sentation features while preserving important elements from the images.

(a)

(b)

Fig. 6. (a) Images from two episodes of a trained SAR agent and (b) reconstructed
images with the representation features from the agent with jumper in Procgen.

t-SNE Analysis. Figure 7 presents the t-SNE results from embeddings ex-
tracted from trained the SAR and PPO agents. While the representation fea-
tures extracted from the PPO agent are well grouped concerning the styles of
environments, those from the SAR agent are scattered without a certain pat-
tern. The average distance between all the PPO sample pairs, where a sample
is composed of two features five frames apart, is 1.21, while that of SAR sample
pairs is 3.41. Also, with sample pairs composed of features 15 frames apart, that
of PPO is 3.43, while that of SAR is 9.30.

Fig. 7. t-SNE results of (left) PPO and (right) SAR with the starpilot in Procgen.
Example image pairs within 15 frames apart from 3 different levels are marked.

10 J. Lee et al.

References

1. Cobbe, K., Hesse, C., Hilton, J., Schulman, J.: Leveraging procedural generation to
benchmark reinforcement learning. In: Proceedings of the International Conference
on Machine Learning (ICML) (2020)

2. Cobbe, K., Hesse, C., Hilton, J., Schulman, J.: Leveraging procedural generation
to benchmark reinforcement learning (2020)

3. Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y.,
Firoiu, V., Harley, T., Dunning, I., et al.: Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures (2018)

4. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: Proceedings
of the International Conference on Machine Learning (ICML) (2018)

5. Ko, B., Ok, J.: Time matters in using data augmentation for vision-based deep
reinforcement learning. arXiv preprint arXiv:2102.08581 (2021)

6. Kostrikov, I.: Pytorch implementations of reinforcement learning algorithms.
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail (2018)

7. Kostrikov, I., Yarats, D., Fergus, R.: Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. Proceedings of the International
Conference on Learning Representations (ICLR) (2021)

8. Laskin, M., Srinivas, A., Abbeel, P.: CURL: Contrastive unsupervised representa-
tions for reinforcement learning. In: Proceedings of the International Conference
on Machine Learning (ICML) (2020)

9. Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., Srinivas, A.: Reinforcement
learning with augmented data. Advances in Neural Information Processing Systems
(NIPS) (2020)

10. Li, B., François-Lavet, V., Doan, T., Pineau, J.: Domain adversarial reinforcement
learning. arXiv preprint arXiv:2102.07097 (2021)

11. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

12. Raileanu, R., Goldstein, M., Yarats, D., Kostrikov, I., Fergus, R.: Automatic data
augmentation for generalization in deep reinforcement learning. Advances in Neural
Information Processing Systems (NIPS) (2021)

13. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

14. Stone, A., Ramirez, O., Konolige, K., Jonschkowski, R.: The distracting control
suite – a challenging benchmark for reinforcement learning from pixels. arXiv
preprint arXiv:2101.02722 (2021)

15. Yarats, D., Zhang, A., Kostrikov, I., Amos, B., Pineau, J., Fergus, R.: Improving
sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741 (2019)

16. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. In:
Proceedings of the International Conference on Learning Representations (ICLR)
(2021)

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

	Style-Agnostic Reinforcement Learning – Supplementary Material –

