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Appendix A Dataset Comparison

To fully evaluate BodySLAM, we required video sequences of human motion
captured by a moving camera where camera intrinsics, ground truth camera tra-
jectories and ground truth human body parameters were available. As shown in
Table 1, none of the existing human motion datasets include all of these required
elements. For this reason, we captured our own dataset of video sequences where
the camera and human subject are both in motion, and used a motion capture
system to obtain ground truth values.
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Human3.6m [5] v X v X v X v v v v X
MPLINF-3DHP [10]  / X v X v X v v v v v
3DPW [9] v X X X v v v v v v v
AMASS |[§] X X X X X X X v X X v
Berkeley MHAD [13] v X v v v X v v v/ v X
MPII HPE [1] v X X X X X v X v X X
Inria Stereo [2] v 4 X v v v v X v X X
JTA [3] v X X X v X v v X v X
Mannequin [6] v X X X X X X X v 4 X
SHPED |7] v v X X v v v X v X X
KTP [11,12] v X X v v v X X v v X
BinoPerfCap [15] v v X X v v X X v v X
TartanAir [14] v v v v v v v v X 4 X
KITTI [4] v v v v v v X X v v X

Table 1: Dataset overview
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Appendix B Camera and Human Trajectory Errors

In general, there are many possible ways of aligning the estimated camera and
human centre trajectories with ground truth to compute the (average) trajectory
errors, but we consider the following four as the most sensible methods:

1. align the camera and human centre trajectories independently in SE(3),
2. align only the camera trajectory in SFE(3) and compute the human centre
trajectory based on this alignment,
. jointly align both human and camera trajectories in SE(3), or
4. align only the first frame of the camera poses, such that the initial condition
is set to ground truth, and compute both the human and camera trajectories
based off this measurement.

w

In our paper, we use the first method to compute the errors, as this method
allows for the fairest comparison with methods that focus only on either the
camera trajectory error or the human centre trajectory error. We use the fourth
method for visualisation in the supplementary video where both trajectories
must be shown simultaneously, as this method aligns the first estimates and
shows the accumulating error over time. Using other methods might confuse the
viewer as the initial poses would not be aligned.

In the following sections, we provide examples of the camera and human
centre trajectories estimated by BodySLAM and the baseline approach. As dis-
cussed in the main paper, the baseline method optimises the camera trajectory
via classic monocular bundle adjustment using just the camera poses and the
3D landmarks. The human centre trajectory estimation is done using only the
bundle adjusted camera poses and unary OpenPose measurements with no mo-
tion model. Section B.1 shows the trajectory estimates when aligning the camera
and human centre trajectories independently in SE(3) (method 1), and Section
B.2 shows the trajectory estimates when aligning only the camera trajectory in
SE(3) (method 2).
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B.1 Trajectories after Independent SE(3) Alignment
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Fig. 1: Estimated camera trajectories for Sequence E2 after SE(3) alignment with the
ground truth camera trajectory. The baseline method optimises the camera trajectory
via monocular bundle adjustment using just the camera poses and 3D landmarks.
By using a human motion model to temporally constrain the optimisation problem,
BodySLAM is able to accurately estimate the metric scale of the camera trajectory.
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Fig. 2: Human centre trajectories for Sequence E2 after SE(3) alignment with the
ground truth human centre trajectory. The baseline method uses the bundle ad-
justed camera poses and unary OpenPose measurements to estimate human motion.
In BodySLAM, the human centre poses and posture parameters are constrained by a
motion model leading to smoother and more accurate trajectories at metric scale.
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B.2 Trajectories after SE(3) Alignment of Camera Poses
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Fig. 3: Estimated camera trajectories for Sequence E4 after SE(3) alignment with the
ground truth camera trajectory. The baseline method optimises the camera trajectory
via monocular bundle adjustment using just the camera poses and 3D landmarks.
By using a human motion model to temporally constrain the optimisation problem,
BodySLAM is able to accurately estimate the metric scale of the camera trajectory.
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Fig.4: Human centre trajectories for Sequence E4 after an SE(3) alignment of the
estimate and ground truth camera trajectories. The baseline method uses the bundle
adjusted camera poses and unary OpenPose measurements to estimate human motion.
In BodySLAM, the human centre poses and posture parameters are constrained by a
motion model leading to smoother and more accurate trajectories at metric scale.
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Appendix C Joint Optimisation and Structural
Landmarks

To evaluate the influence and necessity of having a joint camera and human
trajectory optimisation, we performed an ablation experiment to assess the in-
fluence of the structural landmarks to the overall performance. In the 2-step
pipeline that we used throughout our paper, where we first estimated an initial
trajectory of the camera, and then added the human state to the factor graph for
the joint optimisation, we introduced an additional perturbation of the camera
trajectory after the first step. This caused the average camera trajectory error
to increase as seen in Table 2 after perturbation. When optimising the factor
graph without structural landmarks, the mean error decreased, relying only on
the human keypoint measurements and the motion model error term. However,
we also show that including the structural landmarks in the second step of the
optimisation, and therefore running a joint optimisation of all elements of the
factor graph, improved the estimation accuracy of the camera trajectory.

We did not include the human and joint trajectory errors, since any change
here in performance does only depend on the increased accuracy of the camera
trajectory, rendering those results redundant.

Table 2: Optimisation of the camera trajectory with and without structural landmarks
after perturbation with £ 100 mm and + 0.01 rad.

C-ATE [mm]
SE(3)

optimised optimised
no landmarks landmarks

Seq. |original perturbed

E 2 193.0 213.1 139.69  138.52
E3 122.3 136 78.03 75.56
M 4 203.1 225.2 143.03 139.4
D1 310.4 340.7 223.08 219.1
D2 316.0 349.1 209.48  205.28

mean| 228.96 252.82 158.662 155.572
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Appendix D Scale Estimation after Perturbation

In this ablation study, we analysed the ability of the motion model to recover
the correct scale of the human and camera motion after perturbation with a
scale factor. The camera trajectory was perturbed after the initial estimation by
a scale factor ranging values from 0.1 to 5.0. The joint optimisation of the full
factor graph was then performed, and the final optimised trajectory was aligned
to ground truth in Sim(3). The estimated scale s should equal the inverse of the
perturbation scale s’, and additionally the deviation is reported in Table 3.

Table 3: Scale estimation after perturbation. Values closer to the perturbation are
better. The deviation is the estimation error relative to the perturbation. This Table
contains the numerical results from Figure 4 in the paper.

perturbation 1/s" [-] |5.000 2.000 1.000 0.500 0.200 0.100
estimated scale s [-] [3.673 2.106 1.051 0.528 0.224 0.124
deviation [%] 26.5 5.3 5.1 5.6 12.0 24.0
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