See and Think: Embodied Agent in Virtual Environment

Zhonghan Zhao, Xuan Wang, Wenhao Chai, Boyi Li, Shengyu Hao, Shidong Cao, Tian Ye, Gaoang Wang* ;

Abstract


"Large language models (LLMs) have achieved impressive pro-gress on several open-world tasks. Recently, using LLMs to build embodied agents has been a hotspot. This paper proposes STEVE, a comprehensive and visionary embodied agent in the Minecraft virtual environment. STEVE comprises three key components: vision perception, language instruction, and code action. Vision perception involves interpreting visual information in the environment, which is then integrated into the LLMs component with agent state and task instruction. Language instruction is responsible for iterative reasoning and decomposing complex tasks into manageable guidelines. Code action generates executable skill actions based on retrieval in skill database, enabling the agent to interact effectively within the Minecraft environment. We also collect STEVE-21K dataset, which includes 600+ vision-environment pairs, 20K knowledge question-answering pairs, and 200+ skill-code pairs. We conduct continuous block search, knowledge question and answering, and tech tree mastery to evaluate the performance. Extensive experiments show that STEVE achieves at most 1.5× faster unlocking key tech trees and 2.5× quicker in block search tasks."

Related Material


[pdf] [supplementary material] [DOI]