MarineInst: A Foundation Model for Marine Image Analysis with Instance Visual Description
Ziqiang Zheng*, Yiwei Chen, Huimin Zeng, Tuan-Anh Vu, Binh-Son Hua, Sai-Kit Yeung
;
Abstract
"Recent foundation models trained on a tremendous scale of data have shown great promise in a wide range of computer vision tasks and application domains. However, less attention has been paid to the marine realms, which in contrast cover the majority of our blue planet. The scarcity of labeled data is the most hindering issue, and marine photographs illustrate significantly different appearances and contents from general in-air images. Using existing foundation models for marine visual analysis does not yield satisfactory performance, due to not only the data distribution shift, but also the intrinsic limitations of the existing foundation models (, lacking semantics, redundant mask generation, or restricted to image-level scene understanding). In this work, we emphasize both model and data approaches for understanding marine ecosystems. We introduce MarineInst, a foundation model for the analysis of the marine realms with instance visual description, which outputs instance masks and captions for marine object instances. To train MarineInst, we acquire MarineInst20M, the largest marine image dataset to date, which contains a wide spectrum of marine images with high-quality semantic instance masks constructed by a mixture of human-annotated instance masks and model-generated instance masks from our automatic procedure of binary instance filtering. To generate informative and detailed semantic instance captions, we use vision-language models to produce semantic richness with various granularities. Our model and dataset support a wide range of marine visual analysis tasks, from image-level scene understanding to regional mask-level instance understanding. More significantly, MarineInst exhibits strong generalization ability and flexibility to support a wide range of downstream tasks with state-of-the-art performance as demonstrated in fig:teaser. Project website: https://marineinst.hkustvgd.com."
Related Material
[pdf]
[supplementary material]
[DOI]