Towards Multi-modal Transformers in Federated Learning
Guangyu Sun*, Matias Mendieta, Aritra Dutta, Xin Li, Chen Chen
;
Abstract
"Multi-modal transformers mark significant progress in different domains, but privacy concerns on high-quality data hinder their further improvement. Federated learning (FL) has emerged as a promising privacy-preserving paradigm for training models without direct access to the raw data held by different clients. Despite its potential, a considerable research direction regarding the unpaired uni-modal clients and the transformer architecture in FL remains unexplored. To fill this gap, this paper explores a transfer multi-modal federated learning (MFL) scenario within the vision-language domain, where clients possess data of various modalities distributed across different datasets. We systematically evaluate the performance of existing methods when a transformer architecture is utilized and introduce a novel framework called Federated modality complementary and collaboration (FedCola) by addressing the in-modality and cross-modality gaps among clients. Through extensive experiments across various FL settings, FedCola demonstrates superior performance over previous approaches, offering new perspectives on future federated training of multi-modal transformers. Code is available at magentahttps://github.com/imguangyu/FedCola."
Related Material
[pdf]
[supplementary material]
[DOI]