TP2O: Creative Text Pair-to-Object Generation using Balance Swap-Sampling
Jun Li*, Zedong Zhang, Jian Yang
;
Abstract
"Generating creative combinatorial objects from two seemingly unrelated object texts is a challenging task in text-to-image synthesis, often hindered by a focus on emulating existing data distributions. In this paper, we develop a straightforward yet highly effective method, called balance swap-sampling. First, we propose a swapping mechanism that generates a novel combinatorial object image set by randomly exchanging intrinsic elements of two text embeddings through a cutting-edge diffusion model. Second, we introduce a balance swapping region to efficiently sample a small subset from the newly generated image set by balancing CLIP distances between the new images and their original generations, increasing the likelihood of accepting the high-quality combinations. Last, we employ a segmentation method to compare CLIP distances among the segmented components, ultimately selecting the most promising object from the sampled subset. Extensive experiments demonstrate that our approach outperforms recent SOTA T2I methods. Surprisingly, our results even rival those of human artists, such as frog-broccoli in Figure ??. Project"
Related Material
[pdf]
[supplementary material]
[DOI]