
Tracking Meets LoRA: Faster Training, Larger
Model, Stronger Performance

Liting Lin1, Heng Fan2, Zhipeng Zhang3, Yaowei Wang1,†,
Yong Xu4,1, and Haibin Ling5,†

1 Pengcheng Laboratory, China
2 Department of CSE, University of North Texas, USA

3 KargoBot, China
4 School of Computer Science & Engineering, South China Univ. of Tech., China

5 Department of Computer Science, Stony Brook University, USA
lt.lin@qq.com, heng.fan@unt.edu, zhipeng.zhang.cv@outlook.com
wangyw@pcl.ac.cn, yxu@scut.edu.cn, hling@cs.stonybrook.edu

Abstract. Motivated by the Parameter-Efficient Fine-Tuning (PEFT)
in large language models, we propose LoRAT, a method that unveils the
power of larger Vision Transformers (ViT) for tracking within laboratory-
level resources. The essence of our work lies in adapting LoRA, a tech-
nique that fine-tunes a small subset of model parameters without adding
inference latency, to the domain of visual tracking. However, unique chal-
lenges and potential domain gaps make this transfer not as easy as the
first intuition. Firstly, a transformer-based tracker constructs unshared
position embedding for template and search image. This poses a chal-
lenge for the transfer of LoRA, usually requiring consistency in the de-
sign when applied to the pre-trained backbone, to downstream tasks.
Secondly, the inductive bias inherent in convolutional heads diminishes
the effectiveness of parameter-efficient fine-tuning in tracking models. To
overcome these limitations, we first decouple the position embeddings in
transformer-based trackers into shared spatial ones and independent type
ones. The shared embeddings, which describe the absolute coordinates
of multi-resolution images (namely, the template and search images),
are inherited from the pre-trained backbones. In contrast, the indepen-
dent embeddings indicate the sources of each token and are learned from
scratch. Furthermore, we design an anchor-free head solely based on a
multilayer perceptron (MLP) to adapt PETR, enabling better perfor-
mance with less computational overhead. With our design, 1) it becomes
practical to train trackers with the ViT-g backbone on GPUs with only
memory of 25.8GB (batch size of 16); 2) we reduce the training time
of the L-224 variant from 35.0 to 10.8 GPU hours; 3) we improve the
LaSOT SUC score from 0.703 to 0.742 with the L-224 variant; 4) we fast
the inference speed of the L-224 variant from 52 to 119 FPS. Code and
models are available at https://github.com/LitingLin/LoRAT.

Keywords: visual object tracking, LoRA, parameter-efficient fine-tuning

† corresponding author

https://github.com/LitingLin/LoRAT


2 L. Lin et al.

L-256/L-224 L-378 g-378

68

70

72

74

76

70.3

73.0

74.9
74.2

75.1

76.2
OSTrack
Ours w/o LoRA
Ours

(a) SUC on LaSOT

L-256/L-224 L-378 g-378
0

10

20

30

40

50

60

35.0

12.1

34.1

10.8

32.2

60.0OSTrack
Ours w/o LoRA
Ours

(b) Training Time (h)

L-256/L-224 L-378 g-378
0

5

10

15

20

25

14.8

10.0

19.1

6.6

14.9

25.8OSTrack
Ours w/o LoRA
Ours

(c) Training Memory (GB)

Fig. 1: Comparison of tracking models on performance and training efficiency. "×"
indicates failure to train due to insufficient memory. Best viewed in color for all figures.

1 Introduction

Visual tracking, aiming to continuously locate the target object from a sequence
given its initial state, is one of the most fundamental problems in computer vi-
sion and has been extensively explored in the past decades [1,2,10,18,28,34,66].
In recent years, the tracking community has witnessed considerable advance-
ments [7,38,59,60] by leveraging the Transformer architecture [15,53], primarily
owing to its exceptional ability in capturing long-range dependencies and flexibil-
ity in accommodating a wide variety of pre-training models [15,26,27,43]. While
Transformer contributes to significant improvements in tracking performance,
their usage is resource-intensive. In particular, most performance-oriented Trans-
former trackers require extensive computational resources, typically involving
multiple high-end data-center GPUs and prolonged training periods. Figure 1
illustrates the escalating resource requirements for training large-scale trackers,
which are becoming increasingly unaffordable for most researchers. The largest
model in visual tracking to date, SeqTrack-L384 [6], employs a ViT-L backbone,
yet lags behind the scale of available pre-trained ViT models. In this work, we aim
to develop methods for training large-scale trackers with manageable resource
requirements, thereby making more advanced large-scale models accessible to a
broader research community and accelerating the evolution of visual tracking.

To achieve the goal, we draw inspiration from the advancements in Parameter-
Efficient Fine-Tuning (PEFT) for large language models (LLMs), which are the
first to encounter the prohibitive costs associated with full fine-tuning of large-
scale models [14, 37]. PEFT methods fine-tune a relatively small number of pa-
rameters while keeping the rest frozen, significantly reducing computational and
storage costs. While these methods have shown effectiveness in language mod-
els [63] and vision-language models [45,64], their application to visual tracking,
which will present unique challenges and potential domain gaps in our study,
has been under-explored. This work is the first to investigate the application of
PEFT in visual tracking, assessing its viability, and addressing domain-specific
challenges. Among various PEFT research streams, we select Low-Rank Adapta-



Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance 3

tion (LoRA) [30]. LoRA achieves parameter-efficient fine-tuning by adding train-
able rank decomposition matrices to certain dense layers of the frozen model,
providing competitive performance compared to other PEFT approaches such
as adapters [29,40,48] or prompt tuning [33,35,42], without additional inference
latency.

However, unlike language models, the downstream task adaptation for vision
models usually requires careful design upon the pre-trained backbone network [3,
24]. Hence, we need a basic tracking framework as the starting point. We employ
the one-stream framework [60] as our baseline, because it brings minimal changes
to the pre-trained ViT model, requiring only an image-pair capable positional
encoding module and a head network. This architecture minimizes the extra
parameters needed for training, aligning with the purpose of parameter-efficient
fine-tuning. Additionally, the encoder-only Transformer architecture has been
demonstrated to be more efficient in training trackers [38].

Yet, it is not as easy as our first intuition to apply LoRA to the one-stream
tracking architecture, mainly due to two key issues below: ① Ineffective design
of positional encoding module. Most Transformer-based trackers adopt separate
positional encodings for template and search region tokens. Albeit effective in full
fine-tuning [60], such design is not well aligned with LoRA-style PEFT and thus
results in suboptimal performance. We argue that this ineffectiveness comes from
the disruption to the original structure of the pre-trained model, which is critical
to preserve in PEFT such as LoRA [30]. ② Inductive biases. We empirically
identify the convolutional head in the one-stream tracker [60] as a bottleneck
in achieving convergence with LoRA. We argue that this is caused by strong
inductive biases in convolutional network [15], making it hard to adapt the pre-
trained model by fine-tuning a small subset of parameters using LoRA.
Our solution. To overcome the above issues in employing LoRA to one-stream
tracker [60], we present two embarrassingly simple but effective designs. Specifi-
cally, in addressing issue ①, we draw inspiration from the well-known BERT [13]
and introduce the token type embedding in input embedding. Concretely, we as-
sign specific types to tokens of template and search region. By doing so, we can
directly leverage existing positional encoding modules of pre-trained ViT models
without disrupting their original structure. Considering different resolutions of
template and search regions, we further devise a multi-resolution absolute posi-
tional embedding adaptation strategy, enabling the support of multi-resolution
inputs to pre-trained ViT models for better performance. To deal with issue
②, we propose a multilayer perceptron (MLP)-based anchor-free head network,
instead of convolutional head network as in [60], for target classification and
bounding box regression. Such a design effectively avoids the inductive biases
when applying LoRA to our baseline one-stream tracker, enabling better perfor-
mance with less computational overhead as shown in our experiments.

It is worth noting that, despite the simplicity in implementation, our solution
is specifically devised to better employ LoRA for improving visual tracking. Par-
ticularly, with our two designs, we propose LoRAT by applying LoRA to the one-
stream OSTrack using various pre-trained ViTs, and extensively assess its per-



4 L. Lin et al.

formance on five large-scale benchmarks, including LaSOT [17], LaSOText [16],
TrackingNet [46], GOT-10k [31], and TNL2K [55]. Our best variant LoRAT-g-
378 sets a new record on LaSOT with 0.762 SUC score when equipped with
ViT-g [47], while the lightest variant LoRAT-B-224 still achieves a comparable
SUC score of 0.717 on LaSOT yet running at 209 FPS. In addition, the required
training resources and time are manageable. The training time of different vari-
ants, from the light LoRAT-B-224 to strong LoRAT-g-378, ranges from 5.9 to
60 hours using 8 Nvidia V100 GPUs. Notably, our base LoRAT-B-224 can even
be trained on a single customer-grade Nvidia RTX 4090 GPU within 11 hours
with 605 inference FPS.

In summary, we make the following contributions: ♠ We, for the first time,
propose leveraging LoRA to develop efficient and resource-friendly generic object
tracking; ♥ We propose two simple yet effective designs to enable better adap-
tion of LoRA for the tracking task; ♣ Our tracker LoRAT, by marrying LoRA
to a one-stream tracker, achieves new state-of-the-art performance on multiple
benchmarks with reasonable resource requirements.

2 Related Work

2.1 Paradigms of Transformer Tracker

Visual tracking has witnessed significant progress in past decades [2, 6–8,11,34,
38,56,59,60,66], particularly with the integration of Transformer architectures.
Early exploration focuses on utilizing Transformer to replace or enhance com-
ponents in traditional tracking frameworks. The work of [54] proposes the first
Transformer tracker by using Transformer for feature fusion in Siamese [1] and
DCF [2,28] pipelines, respectively. TransT [7] leverages self-attention for feature
enhancement and cross-attention for feature fusion. Subsequent research exploits
the Transformer’s modeling flexibility for improved template-search region re-
lationship representation. The approaches of [23, 58] explore feature interaction
within the backbone network. Stark [59] and SwinTrack [38] explore joint feature
enhancement and feature interaction via Transformer but still separate backbone
networks for feature extraction on template and search region.

More recently, the one-stream tracking framework emerges as a significant
evolution, with Mixformer [8], SimTrack [5], and OSTrack [60] serving as the
vanguard. This paradigm allows for earlier interaction between the template and
search region, facilitating joint feature extraction and fusion. The self-attention
mechanism of the Transformer architecture plays a crucial role in this context,
enhancing the model’s ability to capture complex dependencies. Most subsequent
Transformer trackers follow this paradigm. GRM [21] introduces adaptive token
division to enable more flexible relation modeling. DropTrack [57] adaptively
performs spatial-attention dropout in the frame reconstruction to facilitate tem-
poral correspondence learning in videos. SeqTrack [6] and ARTrack [56] add a
Transformer decoder on the top a one-stream encoder to predict object bounding
boxes in an autoregressive fashion.



Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance 5

MLP

LayerNorm

LoRA

MSA

LayerNorm

Input
Embeddings

LoRA

Transformer Encoder

Linear Projection 

Patch embeddings

Token type embeddings

Position embeddings 𝑃1,1

b

𝑃1,2

t

𝑃2,1

b

𝑃2,2

b

𝑃1,1

s

𝑃1,2

s

𝑃1,3

s

𝑃2,1

s

𝑃2,2

s

𝑃2,3

s

𝑃3,1

s

𝑃3,2

s

𝑃3,3

s

𝑙 𝑡
𝑟

𝑏

Frozen

Trainable

Result

MLP-only
Head

Cls.

Reg.

M
L

P

M
L

P

M
L

P

M
L

P

M
L

P

M
L

P

MLP-based 
Classification

MLP-based
Regression

Fig. 2: Architecture of LoRAT. The template and search region are first split and then
projected as patch embeddings. Patch embeddings are added with shared position em-
beddings and token type embeddings as the input embeddings, which are then fed into
Transformer encoder for joint feature extraction and fusion. The resulting representa-
tions are fed to the MLP-only head network for target classification and anchor-free
based bounding box regression. Most network components from the pre-trained ViT
model are frozen during training, except for LoRA modules applied on the linear layers
in the Transformer encoder, the token type embeddings, and the head network.

2.2 Parameter Efficient Fine Tuning

Parameter Efficient Fine Tuning (PEFT) is a solution to the challenge of fine-
tuning large models, which becomes impractical due to high costs. PEFT enables
efficient fine-tuning by adjusting a significantly smaller subset of parameters in-
stead of the full model. PEFT methods primarily fall into two categories: prompt
tuning-based [33, 35, 41, 42] and adapter-based approaches [29, 40, 48]. Prompt
tuning-based approaches utilize continuous vectors as a part of input prompts,
which are optimized through gradient descent during fine-tuning. Adapter-based
approaches, on the other hand, introduce additional learnable modules either
within or parallel to specific network components. One notable family of adapter-
based methods is LoRA [30] and its variants [12, 25, 62]. These methods apply
low-rank matrices to approximate weight changes during fine-tuning and can be
merged with pre-trained weights prior to inference, making them particularly
efficient as they do not add any extra inference burden.

3 Adapting ViT for LoRA-friendly Tracker

This section meticulously outlines our approach, beginning with an elucidation of
our baseline, the one-stream tracking framework. We then introduce the concept
of Low-Rank Adaptation (LoRA), a pivotal technique for the efficient tuning of
large-scale models for specialized tasks, emphasizing its role in enhancing model
adaptability with minimal computational overhead. Following this, we explore
the architectural adjustments necessary to render our model compatible with



6 L. Lin et al.

LoRA, including modifications to the model’s input embedding and an MLP-
only head network. An overview of our tracker is shown in Fig. 2.

3.1 Preliminaries

One-Stream Tracker. Our approach builds upon the one-stream tracking
framework [60], which utilizes the Transformer’s multi-head attention mecha-
nism [53] to attend to different representation subspaces at various positions
simultaneously, enabling joint feature extraction and fusion.

One-stream trackers follow the Siamese tracker framework [1], requiring a
template image T ∈ RHT×WT×3 and a search region image S ∈ RHS×WS×3 as
inputs. The template image T and the search region image S are first projected
by a learnable linear projection layer to obtain the template token embeddings
and the search region token embeddings. Assuming the image patch resolution is
(P, P ), the template image is divided into NT = NH

T ×NW
T image patches, and

the search region image is divided into NS = NH
S × NW

S image patches, where
NH

T , NW
T , NH

S , NW
S = HT ,WT , HS ,WS/P . The resulting patch embeddings are

the template token embeddings T ∈ RNT×d and the search region embeddings
S ∈ RNS×d, where d represents the hidden dimension of the network.

Subsequently, two positional embeddings, ET and ES , are added to these
token embeddings respectively, obtaining the template input embeddings t0 ∈
RNT×d and the search region input embeddings s0 ∈ RNS×d:

t0 = T+ET , s0 = S+ES . (1)

Then, the template input embeddings t0 and the search region input em-
beddings s0 are concatenated as z0 and being fed into an L-layer Transformer
encoder. The encoder comprises multi-head self-attention mechanisms and feed-
forward neural networks. The output of the encoder, zL ∈ R(NT+NS)×d, repre-
sents the joint feature representation of the template image and the search region
image. Finally, a de-concatenation operation is performed to obtain the feature
representations of the template image and the search region, denoted as T and
S, respectively. The search region feature representation S is then fed into the
head network for further processing. The whole process is encapsulated by the
following equations:

z0 = Concat(t0, s0), (2)
z′ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1 . . . L, (3)
zℓ = MLP(LN(z′ℓ)) + z′ℓ, ℓ = 1 . . . L, (4)

T ,S = DeConcat(zL). (5)

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) [30] is a technique
for the efficient fine-tuning of large-scale pre-trained models. Typically, these
models are initially trained on extensive datasets, which provides a broad foun-
dational knowledge. To adapt the models to specific downstream tasks, models



Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance 7

are fine-tuned with domain-specific data. Traditional fine-tuning is computa-
tionally intensive, as it involves a full forward and backward pass through the
network, requiring significant computational resources and memory.

LoRA addresses these issues by proposing a low-rank matrix decomposition
to represent weight updates, which can hugely reduce the number of trainable
weights and memory requirements. The principle behind LoRA is that while
neural networks typically have full-rank weight matrices during pre-training, the
updates required for fine-tuning to a specific task have a low “intrinsic dimen-
sion”. Remarkably, in many applications, LoRA shows a comparable performance
to full fine-tuning of the network.

In the context of fine-tuning weight updates (∆Θ), LoRA employs consid-
erably smaller matrices (∆Φ), thus dramatically reducing the parameter space
that needs to be learned. For a weight matrix update in the network ∆θi, LoRA
approximates it using:

∆θi ≈ ∆ϕi = BA

where B ∈ Rd×r and A ∈ Rr×k, with the rank r ≪ min(d, k). This significantly
reduces the learning complexity from learning d× k parameters to learning only
(d+ k)× r parameters.

Importantly, adopting LoRA does not increase the inference latency of the
model. After fine-tuning, the model’s weights are updated by adding the low-
rank approximations to the original weights. This approach simplifies the de-
ployment of multiple task-specific models on top of a single large model because
the updates (∆Φ) are much smaller than the original weights (∆Θ).

3.2 LoRA-friendly Model Design

Decoupled Input Embedding. ViT models require positional encodings to in-
ject positional information. Existing one-stream trackers use separate positional
embeddings for template and search region tokens, which disrupt the original
structure of the pre-trained ViT model, leading to ineffectiveness in PEFT. We
explore multi-resolution positional embedding and token type embedding to ad-
dress this issue.
Token type embedding. We incorporate token type embedding (also called seg-
ment embedding), which is originally proposed in the BERT [13] language model,
into our tracker, assigning unique embeddings for template and search region
tokens. This approach decouples token type identification from positional em-
beddings, improving parameter efficiency and flexibility.

We also explore more usage of token type embedding. The cropping strat-
egy [1] commonly used by Siamese trackers to generate tracking templates has
several issues that may confuse the tracker: the aspect ratio of the target ob-
jects in the templates is variable, some target objects do not have clear semantic
meanings, and some target objects in the templates can not be not clearly distin-
guishable from the background. Token type embedding can help alleviate these
issues by explicitly annotating foreground and background parts.



8 L. Lin et al.

Positional embedding. Most ViT models adapt the 1D absolute positional em-
bedding [15], which only works for fixed resolutions. Meanwhile, the one-stream
trackers usually utilize images of two different sizes as inputs. According to the
PEFT-friendly model design principle, we have to share the positional embedding
across two images. We explore two strategies to reuse existing absolute positional
embeddings for different input sizes. Both strategies regard the original 1D ab-
solute embedding in a 2D view. Suppose the original 1D absolute positional em-
bedding is P , the 2D view of P is P2d = [p1,1, ..., p1,w; p2,1, ..., p2,w; ph,1, ..., ph,w].
For convenience, we assume that the resolution of search region image is the
native resolution of ViT model, thus P2d can be directly applied to search region
tokens, i.e. the search region positional embedding Px = P2d.

The first approach regards absolute positional embedding as continuous spa-
tial position embedding. In this way, we can direct interpolate the Px to the
expected size of Pz. In this way, Pz = interpolate(Px). We call this approach as
interpolation-based adaptation.

The second approach regards absolute positional embedding as discrete patch
index embedding. Thus, the smaller positional embedding for template tokens Pz

can be directly taken as a sub-matrix of the Px, which is formed by taking a block
of the entries of the size of template patches (NH

T ×NW
T ) from the top left corner

of the Px. In this way, Pz = [p1,1, ..., p1,NW
T
; p2,1, ..., p2,NW

T
; pNH

T ,1, ..., pNH
T ,NW

T
].

We call this approach as slicing-based adaptation.
For other commonly used positional encoding schemes, like sinusoidal po-

sitional encoding [15], relative positional embedding [50] or Rotary Positional
Embedding [51], they do not target on specific resolution, so apply them on
template tokens and search region tokens individually.

The final input embeddings are constructed by adding the positional embed-
ding and token type embedding to the patch embeddings:

E
(i,j)
T =

{
E

(i,j)
pos +ETo

type, if T(i,j) belongs target,
E

(i,j)
pos +ETb

type, otherwise
(6)

E
(i,j)
S = E(i,j)

pos +ES
type, (7)

where ETo
type ∈ Rd, ETb

type ∈ Rd, and ES
type ∈ Rd are the token type embedding of

the template foreground (target object) tokens, the template background tokens,
and search region tokens respectively. Notice, the positional encoding E

(i,j)
pos is

shared between template and search region.

MLP-only Head Network. To alleviate potential inductive biases brought
by the convolutional head, such as locality assumptions on data structure [15],
which may hinder convergence with LoRA-based fine-tuning, we employ a multi-
layer perceptron (MLP) only head.

The head network consists of two branches for target classification and bound-
ing box regression, each implemented as a three-layer perceptron. Both branches
take search area tokens S from the Transformer encoder output as input. The



Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance 9

head network applies a center-based anchor-free [52] style. The target classifica-
tion branch predicts a classification confidence map R ∈ (0, 1)N

H
S ×NW

S , estimat-
ing the IoU between the predicted bounding box and the ground-truth (the esti-
mation value is targeted to 0 during training if the object does not fall in the cur-
rent anchor). The bounding box regression branch predicts a bounding box map
B ∈ (0, 1)N

H
S ×NW

S ×4. The anchor with the maximum value on the classification
confidence map is considered the responsible anchor. For each anchor center point
(xi, yj), the bounding box regression branch predicts offsets (li,j , ti,j , ri,j , bi,j).
The final bounding box is obtained by (xi − li,j , yj − ti,j , xi + ri,j , yj + bi,j).

4 Experiments

4.1 Experimental Setup

LoRAT is trained and evaluated on 8 × NVIDIA V100 GPUs. This section re-
ports the main experimental setup, with more details in supplementary ma-
terial.
Model. We present six variants of LoRAT, namely B-224, B-378, L-224, L-378,
g-224, and g-378. These variants are based on three sizes of the Vision Trans-
former (ViT): ViT-B [15], ViT-L [15], and ViT-g [47], serving as the backbone
networks. Each size is configured with two distinct input resolutions. Specifi-
cally, for the -224 variants, the template size is set to [112× 112], and the search
region size is set to [224× 224]; For the -378 variants, the template size is set to
[196 × 196], the search region size is set to [378 × 378]. By default, all variants
employ the DINO v2 [47] pre-trained weights.
Training. The training splits of LaSOT [17], TrackingNet [46], GOT-10k [31]
(1k sequences removed for fair comparison following [59, 60], as they overlap
with videos used in [32]), and COCO 2017 [39] are used to train the trackers.
Additionally, the evaluation results on the GOT-10k test split for trackers are
trained only with the GOT-10k training split, following the protocol described
in [31]. We train the trackers with 170 epochs, each epoch containing 131,072
image pairs. For the GOT-10k benchmark, we reduce the training epochs to 100
to prevent over-fitting. Each GPU holds 16 samples for an iteration, resulting in
a batch size of 128. Following the suggestion in [12], LoRA is applied on all linear
layers of ViT backbone, including four projection matrices in the self-attention
module and two projection matrices in the MLP module. The rank r of LoRA is
set to 64 for all variants. All LoRA linear layers are initialized as the same way
as BERT [13] linear layer, truncated normal distribution with std 0.02.
Inference. LoRAT follows conventional steps of Siamese tracking [1] during
the inference process: the template is cropped from the first frame of the video
sequence, with target object as center; the search area is cropped from the current
tracking frame, with the image center as the predicted target center position
from the previous frame. To exploit the location prior during tracking, a Hanning
window penalty to the classification response map R output by the head network.



10 L. Lin et al.

Table 1: Benchmarking our tracker on five large-scale challenging datasets. For GOT-
10k evaluation, all the methods follow the one-shot protocol, training only on the train
split of GOT-10k. Bold indicates the best results.

Tracker LaSOT [17] LaSOText [16] TrackingNet [46] GOT-10k [31] TNL2K [55]
SUC PNorm P SUC PNorm P SUC PNorm P AO SR0.5 SR0.75 SUC P

TransT [7] 64.9 73.8 69.0 - - - 81.4 86.7 80.3 67.1 76.8 60.9 50.7 51.7
AutoMatch [65] 58.3 - 59.9 37.6 - 43.0 76.0 - 72.6 65.2 76.6 54.3 47.2 43.5

STARK [59] 67.1 77.0 - - - - 82.0 86.9 - 68.8 78.1 64.1 - -
KeepTrack [44] 67.1 77.2 70.2 48.2 - - - - - - - - - -
MixFormer [8] 70.1 79.9 76.3 - - - 83.9 88.9 83.1 - - - - -

SBT [58] 66.7 - 71.1 - - - - - - 70.4 80.8 64.7 - -
AiATrack [20] 69.0 79.4 73.8 47.7 55.6 55.4 - - - 69.6 80.0 63.2 - -
SimTrack [5] 70.5 79.7 - - - - - - - 69.8 78.8 66.0 55.6 55.7
OSTrack [60] 71.1 81.1 77.6 50.5 61.3 57.6 83.9 88.5 83.2 73.7 83.2 70.8 55.9 56.7

SwinTrack [38] 71.3 - 76.5 49.1 - 55.6 84.0 - 82.8 72.4 80.5 67.8 55.9 57.1
DropTrack [57] 71.8 81.8 78.1 52.7 63.9 60.2 - - - 75.9 86.8 72.0 56.9 57.9

SeqTrack [6] 72.5 81.5 79.3 50.7 61.6 57.5 85.5 89.8 85.8 74.8 81.9 72.2 57.8 -
ARTrack [56] 73.1 82.2 80.3 52.8 62.9 59.7 85.6 89.6 86.0 78.5 87.4 77.8 60.3 -

CiteTracker [36] 69.7 78.6 75.7 - - - 84.5 89.0 84.2 74.7 84.3 73.0 57.7 59.6
ROMTrack [4] 71.4 81.4 78.2 51.3 62.4 58.6 84.1 89.0 83.7 74.2 84.3 72.4 - -

MixViT [9] 72.4 82.2 80.1 - - - 85.4 90.2 85.7 75.7 85.3 75.1 - -

LoRAT-B-224 71.7 80.9 77.3 50.3 61.6 57.1 83.5 87.9 82.1 72.1 81.8 70.7 58.8 61.3
LoRAT-B-378 72.9 81.9 79.1 53.1 64.8 60.6 84.2 88.4 83.0 73.7 82.6 72.9 59.9 63.7
LoRAT-L-224 74.2 83.6 80.9 52.8 64.7 60.0 85.0 89.5 84.4 75.7 84.9 75.0 61.1 65.1
LoRAT-L-378 75.1 84.1 82.0 56.6 69.0 65.1 85.6 89.7 85.4 77.5 86.2 78.1 62.3 67.0
LoRAT-g-224 74.9 84.5 82.3 53.3 65.4 61.1 85.2 89.8 85.1 77.7 87.7 77.7 61.8 66.6
LoRAT-g-378 76.2 85.3 83.5 56.5 69.0 64.9 86.0 90.2 86.1 78.9 87.8 80.7 62.7 67.8

4.2 Quantitative Comparison with the State-of-the-Art Models

In this section, we present a comprehensive evaluation of our proposed LoRAT,
benchmarking it against the latest Transformer-based tracking models across
five datasets. We follow the official evaluation protocols to ensure fair and ac-
curate comparison. The results are detailed in Table 1. Additionally, we present
efficiency comparison with several SOTA Transformer trackers in Table 2.
LaSOT [17] is a large scale benchmark containing 280 test videos. From Table 1,
our smallest variant LoRAT-B-224 achieves 0.717 SUC score, already providing a
competitive performance. LoRAT-L-224 provides a SUC score of 0.742, beats all
other SOTA models. With the current largest backbone network applied in visual
tracking, LoRAT-g-384 achieves a breakthrough SUC score of 0.762, significantly
outperforming the previous state-of-the-art model ARTrack [56] by 3.1%.
LaSOText [16] is an extension of LaSOT with 150 additional highly challenging
sequences. The results are presented in Table 1. LoRAT-B-378 obtains 0.531
SUC score, outperforms the prior best, ARTrack [56], by 0.4% with a relatively
smaller backbone network. LoRAT-L-378 incorporating the ViT-L [47] backbone,
attains a breakthrough SUC score of 0.566. Our largest variant, LoRAT-g-378,
achieves a comparable SUC score of 0.565.



Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance 11

Tracker Speed (fps) MACs (G) #Params (M)

SwinTrack-B-384 [38] 45 69.7 91
OSTrack-256 [60] 130 21.5 -
OSTrack-384 [60] 68 48.3 -

SeqTrack-B256 [6] 38 66 89
SeqTrack-L384 [6] 6 524 309

LoRAT-B-224 209 30 99 (11, 2)
LoRAT-B-378 151 97 99 (11, 2)
LoRAT-L-224 119 103 336 (28, 4)
LoRAT-L-378 63 325 336 (28, 4)
LoRAT-g-224 50 378 1216 (71, 9)
LoRAT-g-378 20 1161 1216 (71, 9)

Table 2: Comparison on
efficiency with state-of-
the-art Transformer track-
ers. The values in paren-
theses for the # params
of our trackers represent
LoRA and extra compo-
nents (token type embed-
ding and head), respec-
tively. The speed of all
trackers was re-evaluated
on our machine.

TrackingNet [46] is a large-scale object tracking benchmark. The test split of
TrackingNet includes 511 video sequences with first frame annotated. The results
in Table 1 demonstrate that all variants of our tracker obtain competitive SUC
scores from 0.835 to 0.860. The largest variant LoRAT-g-378 gets the best 0.860
SUC score, outperforming the previous best model by 0.4%.
GOT-10k [31] provides 180 videos for testing. Following the official protocol,
we report the results on the models trained only on GOT-10k train split. As
reported in Table 1, on the GOT-10k benchmark, the model size greatly impact
the final results, more than the input resolution. our LoRAT-g-378 gets a new
state-of-the-art AO score of 78.9%.
TNL2k [55] is a recent tracking dataset with 700 test videos. As shown in
Table 1, LoRAT-L-378 achieves 2.0% gain over ARTrack [56] at 0.623 SUC score.
LoRAT-g-378 achieves the best performance with a SUC score of 0.627.
Efficiency Comparison. We compare LoRAT with other Transformer trackers
on efficiency in Table 2, including running speed, floating point operations and
number of parameters. Thanks to the highly efficient one-stream architecture,
zero inference cost of LoRA, our tracker has a quite impressive running speed to
MACs ratio. Our lightest variant LoRAT-B-224, while delivering SOTA perfor-
mance, operates at an impressive 209 frames per second (fps). The LoRAT-L-378
variant, defeat other trackers on most datasets, but still have a 63 fps. Remark-
ably, the LoRAT-g-378 variant, leveraging the largest ViT backbone to date,
maintains a practical speed of 20 fps. Besides, our tracker also exhibits efficiency
in storage requirements. For instance, the visual tracking adaptation module in
the LoRAT-g-378 variant, which includes LoRA, token type embedding, and the
head, requires only 80 million parameters. This is substantially less than the 1.1
billion parameters of the ViT-g model.

4.3 Ablation Experiments

To gain deep insights into LoRAT, we perform detailed ablation studies on three
datasets, including LaSOT [17], LaSOText [16], and TNL2k [55].
Performance improvement of LoRA. We compare the performance of Lo-
RAT with full-finetune variants on 4 relatively small variants, as shown in Ta-



12 L. Lin et al.

Table 3: Ablation on the performance improvement of LoRA on our tracker. All
variants are trained with full parameter fine-tuning. The results are compared with
our default settings, i.e. the variants trained with LoRA.

Variant LaSOT [17] LaSOText [16] TNL2K [55]
SUC P SUC P SUC P

B-224 70.9 (↓0.8) 76.2 (↓1.1) 50.0 (↓0.3) 57.1 (↓0.0) 58.1 (↓0.7) 60.1 (↓1.2)
B-378 73.2 (↑0.3) 78.8 (↓0.3) 52.9 (↓0.2) 60.5 (↓0.1) 60.0 (↑0.1) 63.3 (↓0.4)
L-224 73.0 (↓1.2) 79.3 (↓1.6) 52.6 (↓0.2) 59.8 (↓0.2) 60.8 (↓0.3) 64.3 (↓0.8)
L-378 74.9 (↓0.2) 81.8 (↓0.2) 55.2 (↓1.4) 63.1 (↓2.0) 61.7 (↓0.6) 65.7 (↓1.3)

ble 3. LoRA improves the performance of the tracker on all variants, indicat-
ing that our model design correctly unleashes the power of parameter-efficient
fine-tuning, promoting the performance of visual tracking through mitigating
catastrophic forgetting [22] during fine-tuning [14,61].

Input embedding. This ablation verifies the effectiveness of the proposed de-
coupled input embedding scheme. The experiments are conducted on the ViT-
L [15] backbone with two input resolution settings. From the results in Table 4,
we observe that: 1) Freezing positional embedding shows slightly better perfor-
mance than the unfreezing one (⑤ vs.①). 2) Adopting “shared positional em-
bedding”, “token type embedding” and “foreground indicating embedding” (our
model) respectively outperforms the “separated positional embedding”, “non-
token embedding” and “non-foreground indicating embedding” version (⑤-⑧).
3) Unfreezing the position embedding will degrade the effectiveness of our pro-
posed foreground indicating embedding (④ vs.③, ⑧ vs.⑦) 4) With a higher
resolution of input images, foreground indicating embedding significantly boost
the performance of our tracker (⑩ vs.⑨).

MLP-only head network. We evaluate the performance of MLP-only and
convolutional head networks under different fine-tuning settings. As shown in
Table 5, the OSTrack [60] convolutional head yields similar competitive results
to the MLP-only head in the full fine-tuning setting but fails to converge in the
LoRA-based fine-tuning setting. We attribute this is due to the inductive biases
in the convolution layer, which may not satisfy the low "intrinsic dimension"
assumption required by low-rank adaptation. Additionally, an MLP-only head
offers computational efficiency.

Aligned comparison with OSTrack. We provide aligned performance com-
parison with OSTrack [60] by replacing only the backbone. For fair comparison,
OSTrack is trained without the early candidate elimination module. Input res-
olution of variants is adjusted according to the patch size of ViT. As shown in
Table 6, all variants of OSTrack are inferior to our base model. Besides, the
performance of the DINOv2 backbone on OSTrack lags behind the default set-
ting (MAE backbone). These results demonstrate the effectiveness of our model
design.



Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance 13

Table 4: Ablation on the input embedding configurations. All experiments are con-
ducted on ViT-L [15] backbone with two input resolution settings and with LoRA-based
fine-tuning. We examine five factors: 1) Freezing positional embeddings during training;
2) Sharing positional embeddings between template and search region images; 3) Using
token type embeddings 4) Incorporating foreground object indicator embeddings; 5)
Input resolution (224 vs 378).

Frozen
P. Emb.

Shared
P. Emb.

Type
Emb.

Foreg.
Indic. Res. LaSOT [17] LaSOText [16] TNL2K [55]

SUC P SUC P SUC P

① 224 73.9 80.4 51.9 59.0 60.6 64.3
② ✓ 224 73.9 80.6 52.7 59.8 60.8 64.8
③ ✓ ✓ 224 74.2 81.1 52.9 60.2 60.8 64.7
④ ✓ ✓ ✓ 224 74.0 80.8 52.8 60.1 61.2 65.5
⑤ ✓ 224 73.5 80.2 51.8 59.1 60.7 64.4
⑥ ✓ ✓ 224 73.8 80.6 53.7 61.4 60.6 64.5
⑦ ✓ ✓ ✓ 224 74.0 80.7 52.4 59.6 60.7 64.7
⑧ ✓ ✓ ✓ ✓ 224 74.2 80.9 52.8 60.0 61.1 65.1
⑨ ✓ ✓ ✓ 378 74.4 82.6 55.2 63.2 62.3 67.1
⑩ ✓ ✓ ✓ ✓ 378 75.1 82.0 56.6 65.1 62.3 67.0

Table 5: Ablation on head modules. Conv head: Replace the 3-layers MLP-base head
in our tracker with 5 stacked Conv-BN-ReLU layers; OSTrack [60] head: Replace the
head in our tracker with OSTrack [60] convolution-based head.

Variant LaSOT [17] LaSOText [16] TNL2k [55] Speed #Params
SUC PNorm P SUC PNorm P SUC P fps M

LoRA:

L-224 74.2 83.6 80.9 52.8 64.7 60.0 61.1 65.1 119 336
+ Conv head 4.7 6.4 1.6 4.5 9.4 0.8 0.0 0.1 119 336
+ OSTrack [60] head 5.4 5.1 1.3 4.9 9.0 1.2 0.1 0.1 119 340

Full Fine-tune:

L-224 73.0 81.8 79.3 52.6 64.1 59.8 60.8 64.3 119 307
+ Conv head 71.7 80.5 78.0 51.7 63.1 59.0 58.8 62.0 109 309
+ OSTrack [60] head 72.4 80.9 78.5 51.9 63.2 59.3 59.3 62.6 104 311

Different pre-training methods. We conduct experiments on four ViT vari-
ants with different pre-training methods [19,26,47,49]. From Table 8, we observe
that the self-supervised DINOv2 outperforms all other ViT variants on most
datasets. Compared with the results in Table 6, our model design effectively
unleash the power of the large-scale pre-training.

Training efficiency of LoRA. We verify the training efficiency of LoRA on
two machines: one with 8 NVIDIA V100 GPUs (Table 7), one with a single
NVIDIA 4090 GPU (Table 9). The results demonstrate that fine-tuning with



14 L. Lin et al.

LoRA significantly reduces training time and GPU memory consumption, espe-
cially for large models.

Due to space limitation, please refer to supplementary material for more
experimental results and analysis.

Table 6: OSTrack variants imple-
mented using official codes.

Variant Pre-training LaSOT SUC

B-256 MAE 68.7
L-256 MAE 70.3
B-224 DINOv2 66.2
L-224 DINOv2 67.1

Table 7: Training time and max
GPU memory usage of our tracker.

Variant Time(h) Memory(GB)

Lo
R

A

B-224 5.9 2.4
B-378 12.2 5.7
L-224 10.8 6.6
L-378 32.2 14.9
g-224 22.3 14.0
g-378 60.0 25.8

F
u
ll

F
in

e-
tu

n
in

g

B-224 5.9 3.2
B-378 12.5 6.5
L-224 12.1 10.0
L-378 34.1 19.1
g-224 29.3 27.1
g-378 Out of Memory

Table 8: Ablation on the impact of ViT back-
bone with various pre-training methods. The
base is B-224 trained with full fine-tuning.

Pre-training LaSOT [17] LaSOText [16] TNL2K [55]
SUC P SUC P SUC P

MAE [26] 69.9 74.8 47.9 54.7 55.2 56.0
CLIP [49] 70.1 75.0 48.7 55.0 56.8 58.3

EVA-02 [19] 70.3 75.6 49.9 56.5 57.2 59.2
DINOv2 [47] 70.9 76.2 50.0 57.1 58.1 60.1

Table 9: Training time, max training GPU
memory usage, max training batch size and
inference FPS of our tracker on a single
customer-grade NVIDIA RTX 4090 GPU.

Variant Time(h) Memory(GB) Batch Speed (fps)

Lo
R

A

B-224 11.0 14.1 128 605
B-378 33.8 20.3 64 285
L-224 34.0 19.5 64 289
L-378 110.3 14.7 16 150

F
u
ll

F
in

e-
tu

n
in

g B-224 11.7 16.1 128 605
B-378 36.5 12 32 285
L-224 38.5 13.7 32 289
L-378 117.8 18 16 150

5 Conclusion

In this work, we introduce a novel approach to visual tracking by applying Low
Rank Adaptation (LoRA) within a one-stream tracking framework. Our contri-
butions include two innovative designs that enable effective adaptation of pre-
trained models for tracking, significantly reducing the resource requirements.
The proposed tracker, LoRAT, not only achieves state-of-the-art performance
on multiple benchmarks but also demonstrates the feasibility of training ad-
vanced tracking models with manageable resources. This study bridges the gap
between advanced tracking technologies and resource accessibility, marking a
pivotal step towards sustainable advancements in the field of visual tracking.

Acknowledgments. This work is supported by Pengcheng Laboratory Research
Project No. PCL2023A08 and No. U20B2052. Heng Fan, Zhipeng Zhang and
Haibin Ling receive no financial support for the research, authorship, and/or
publication of this article.



Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance 15

References

1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-
convolutional siamese networks for object tracking. In: ECCV Workshops (2016)

2. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model
prediction for tracking. In: ICCV (2019)

3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. In: NeurIPS (2020)

4. Cai, Y., Liu, J., Tang, J., Wu, G.: Robust object modeling for visual tracking. In:
ICCV (2023)

5. Chen, B., Li, P., Bai, L., Qiao, L., Shen, Q., Li, B., Gan, W., Wu, W., Ouyang,
W.: Backbone is all your need: A simplified architecture for visual object tracking.
In: ECCV (2022)

6. Chen, X., Peng, H., Wang, D., Lu, H., Hu, H.: SeqTrack: Sequence to sequence
learning for visual object tracking. In: CVPR (2023)

7. Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In:
CVPR (2021)

8. Cui, Y., Jiang, C., Wang, L., Wu, G.: MixFormer: End-to-end tracking with iter-
ative mixed attention. In: CVPR (2022)

9. Cui, Y., Jiang, C., Wu, G., Wang, L.: MixFormer: End-to-end tracking with itera-
tive mixed attention. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence pp. 1–18 (2024)

10. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Eco: Efficient convolution op-
erators for tracking. In: CVPR (2017)

11. Danelljan, M., Gool, L.V., Timofte, R.: Probabilistic regression for visual tracking.
In: CVPR (2020)

12. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: QLoRA: Efficient fine-
tuning of quantized llms. arXiv preprint arXiv:2305.14314 (2023)

13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL (2019)

14. Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S., Chen, Y., Chan,
C.M., Chen, W., et al.: Delta tuning: A comprehensive study of parameter efficient
methods for pre-trained language models. arXiv preprint arXiv:2203.06904 (2022)

15. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
ICLR (2021)

16. Fan, H., Bai, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Huang, M., Liu, J.,
Xu, Y., et al.: LaSOT: A high-quality large-scale single object tracking benchmark.
International Journal of Computer Vision 129, 439–461 (2021)

17. Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C.,
Ling, H.: LaSOT: A high-quality benchmark for large-scale single object tracking.
In: CVPR (2019)

18. Fan, H., Ling, H.: Siamese cascaded region proposal networks for real-time visual
tracking. In: CVPR (2019)

19. Fang, Y., Sun, Q., Wang, X., Huang, T., Wang, X., Cao, Y.: EVA-02: A visual
representation for neon genesis. arXiv preprint arXiv:2303.11331 (2023)

20. Gao, S., Zhou, C., Ma, C., Wang, X., Yuan, J.: AiATrack: Attention in attention
for transformer visual tracking. In: ECCV (2022)



16 L. Lin et al.

21. Gao, S., Zhou, C., Zhang, J.: Generalized relation modeling for transformer track-
ing. In: CVPR (2023)

22. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv
preprint arXiv:1312.6211 (2013)

23. Guo, M., Zhang, Z., Fan, H., Jing, L., Lyu, Y., Li, B., Hu, W.: Learning target-
aware representation for visual tracking via informative interactions. In: IJCAI
(2022)

24. Hao, Y., Song, H., Dong, L., Huang, S., Chi, Z., Wang, W., Ma, S., Wei, F.:
Language models are general-purpose interfaces. arXiv preprint arXiv:2206.06336
(2022)

25. Hayou, S., Ghosh, N., Yu, B.: Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354 (2024)

26. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: CVPR (2022)

27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

28. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with
kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37(3), 583–596 (2014)

29. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Ges-
mundo, A., Attariyan, M., Gelly, S.: Parameter-efficient transfer learning for nlp.
In: ICML (2019)

30. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen,
W.: LoRA: Low-rank adaptation of large language models. In: ICLR (2022)

31. Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for
generic object tracking in the wild. IEEE Transactions on Pattern Analysis and
Machine Intelligence 43(5), 1562–1577 (2021)

32. Kristan, M., Matas, J., Leonardis, A., Vojíř, T., Pflugfelder, R., Fernández, G.,
Nebehay, G., Porikli, F., Čehovin, L.: A novel performance evaluation methodology
for single-target trackers. IEEE Transactions on Pattern Analysis and Machine
Intelligence 38(11), 2137–2155 (2016)

33. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient
prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing (2021)

34. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: Evolution of
siamese visual tracking with very deep networks. In: CVPR (2019)

35. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation.
In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers) (2021)

36. Li, X., Huang, Y., He, Z., Wang, Y., Lu, H., Yang, M.H.: CiteTracker: Correlating
image and text for visual tracking. In: ICCV (2023)

37. Lialin, V., Deshpande, V., Rumshisky, A.: Scaling down to scale up: A guide to
parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647 (2023)

38. Lin, L., Fan, H., Zhang, Z., Xu, Y., Ling, H.: SwinTrack: A simple and strong
baseline for transformer tracking. In: NeurIPS (2022)

39. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014)



Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance 17

40. Lin, Z., Madotto, A., Fung, P.: Exploring versatile generative language model via
parameter-efficient transfer learning. In: Findings of the Association for Computa-
tional Linguistics: EMNLP 2020 (2020)

41. Liu, X., Ji, K., Fu, Y., Tam, W., Du, Z., Yang, Z., Tang, J.: P-tuning: Prompt
tuning can be comparable to fine-tuning across scales and tasks. In: Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers) (2022)

42. Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., Tang, J.: Gpt understands,
too. arXiv:2103.10385 (2021)

43. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

44. Mayer, C., Danelljan, M., Paudel, D.P., Van Gool, L.: Learning target candidate
association to keep track of what not to track. In: ICCV (2021)

45. Mou, C., Wang, X., Xie, L., Wu, Y., Zhang, J., Qi, Z., Shan, Y., Qie, X.: T2i-
adapter: Learning adapters to dig out more controllable ability for text-to-image
diffusion models. arXiv preprint arXiv:2302.08453 (2023)

46. Muller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: A large-
scale dataset and benchmark for object tracking in the wild. In: ECCV (2018)

47. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: DINOv2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

48. Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., Gurevych, I.: AdapterFusion: Non-
destructive task composition for transfer learning. In: Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Linguistics:
Main Volume (2021)

49. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021)

50. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position represen-
tations. In: NAACL (2018)

51. Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., Liu, Y.: Roformer: Enhanced trans-
former with rotary position embedding. arXiv preprint arXiv:2104.09864 (2021)

52. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: Fully convolutional one-stage object
detection. In: ICCV (2019)

53. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NIPS (2017)

54. Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: Exploiting tem-
poral context for robust visual tracking. In: CVPR (2021)

55. Wang, X., Shu, X., Zhang, Z., Jiang, B., Wang, Y., Tian, Y., Wu, F.: Towards
more flexible and accurate object tracking with natural language: Algorithms and
benchmark. In: CVPR (2021)

56. Wei, X., Bai, Y., Zheng, Y., Shi, D., Gong, Y.: Autoregressive visual tracking. In:
CVPR (2023)

57. Wu, Q., Yang, T., Liu, Z., Wu, B., Shan, Y., Chan, A.B.: DropMAE: Masked
autoencoders with spatial-attention dropout for tracking tasks. In: CVPR (2023)

58. Xie, F., Wang, C., Wang, G., Cao, Y., Yang, W., Zeng, W.: Correlation-aware deep
tracking. In: CVPR (2022)

59. Yan, B., Peng, H., Fu, J., Wang, D., Lu, H.: Learning spatio-temporal transformer
for visual tracking. In: ICCV (2021)

60. Ye, B., Chang, H., Ma, B., Shan, S., Chen, X.: Joint feature learning and relation
modeling for tracking: A one-stream framework. In: ECCV (2022)



18 L. Lin et al.

61. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models. In: ICCV (2023)

62. Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y., Chen, W., Zhao, T.: Adalora:
Adaptive budget allocation for parameter-efficient fine-tuning. In: ICLR (2023)

63. Zhang, R., Han, J., Liu, C., Zhou, A., Lu, P., Li, H., Gao, P., Qiao, Y.: LLaMA-
adapter: Efficient fine-tuning of large language models with zero-initialized atten-
tion. In: ICLR (2024)

64. Zhang, R., Zhang, W., Fang, R., Gao, P., Li, K., Dai, J., Qiao, Y., Li, H.: Tip-
adapter: Training-free adaption of clip for few-shot classification. In: ECCV (2022)

65. Zhang, Z., Liu, Y., Wang, X., Li, B., Hu, W.: Learn to match: Automatic matching
network design for visual tracking. In: ICCV (2021)

66. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: Object-aware anchor-free track-
ing. In: ECCV (2020)


	Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance

