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In this supplementary document we report explicit formulas for the deriva-
tives of our polynomial equations with respect to their unknowns, that are the
basis of the Jacobian check employed by our approach. In addition, we summa-
rize the comparison with [1] and [5] in terms of size of the respective matrices.

A Useful Facts

The derivatives of functions involving vectors and matrices ultimately lead back
to the partial derivatives of the individual components, and it is all about how
to arrange these partial derivatives. There are several conventions, we follow [4].

Definition 1. Let F : Rn×q → Rm×p be a differentiable function. The deriva-
tive of F in X is the matrix mp× nq:

DF(X) =
∂ vecF(X)

∂(vecX)⊤
. (1)

By this definition, if F : Rn → Rm then DF(x) coincides with the usual Jacobian
matrix of F . With respect to other ways of arranging partial derivatives, this
definition allows to apply the chain rule. The following theorem is very useful,
as it transforms the problem of finding the Jacobian of a matrix function, into
the problem of finding its differential, which is usually easier.

Theorem 1 (Identification). Let F : Rn×q → Rm×p be a differentiable func-
tion and let d be the differential. Then

d vecF(X) = A(X) d vecX (2)

is equivalent to
DF(X) = A(X). (3)

As an example, one can easily find out the derivative of the matrix function

F(X) = AXB

where A,X and B be matrices of sizes m× n, n× p and p× q, respectively. In
fact, by the so-called “vectorization trick” [3], which states that vec(AXB) =
(B⊤ ⊗A) vecX, it follows that:

d vec(F(X)) = d vec(AXB) = (B⊤ ⊗A) d vecX. (4)
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Therefore, by the identification theorem we get:

D(AXB) = (B⊤ ⊗A). (5)

From this, it follows as a special case:

D(AX) = (Ip ⊗A)

D(XB) = (B⊤ ⊗ In).
(6)

Furthermore, it can be also shown that [4]:

D(X⊤) = Kn,p (7)

where Kn,p is the commutation matrix, namely the np × np matrix such that
vec(A) = Kn,p vec(A

⊤) for any A of size n× p. Moreover, for A and B of sizes
m× n and p× q respectively, we have [4]:

B ⊗A = Km,p(A⊗B)Kq,n. (8)

The commutation matrix is a permutation, hence it is orthogonal: Kn,pK
⊤
n,p =

Inq. Please note also that Kn,p = K⊤
p,n.

B Derivatives of Our Polynomial Equations

First, we are going to compute the Jacobian of the matrix function

F(Pi, Pj) = S + S⊤ (9)

with respect to the cameras Pj and Pi, where Fij is their fundamental matrix
and S = P⊤

j FijPi. It is clear that derivatives with respect to other cameras are
zero as only two cameras are involved. Using formulas from Sec. A, we get:

∂ vecS

∂(vecPj)⊤
= ((FijPi)

⊤ ⊗ I4)K3,4 = K4,4(I4 ⊗ (FijPi)
⊤) (10)

∂ vecS

∂(vecPi)⊤
= I4 ⊗ (P⊤

j Fij) (11)

and

∂ vecS⊤

∂(vecPj)⊤
= I4 ⊗ (FijPi)

⊤ (12)

∂ vecS⊤

∂(vecPi)⊤
= K4,4(I4 ⊗ (P⊤

j Fij)) (13)

Hence:
∂ vecF

∂(vecPj)⊤
= (K4,4 + I16)

(
I4 ⊗ (FijPi)

⊤) (14)

∂ vecF
∂(vecPi)⊤

= (K4,4 + I16)
(
I4 ⊗ (P⊤

j Fij)
)
. (15)
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The Jacobians (14) and (15) are the blocks that constitute the full Jacobian
matrix. They have 12 columns each and 16 rows but only 10 corresponding to
the lower (or upper) triangular part of S + S⊤ are used, because of symmetry.
The full Jacobian has a block structure that follows the incidence matrix B of
the view graph, which has one row for every edge and one column for every node.
In the row of B that represents the edge (i, j) there is a −1 in column i and a +1
in column j and other entries are zero; in the full Jacobian the +1 is replaced
by the 10× 12 block (14) and the −1 is replaces by the 10× 12 block (15):[

0 · · · 0, ∂ vecF
∂(vecPi)⊤

, 0 · · · 0, ∂ vecF
∂(vecPj)⊤

, 0 · · · 0
]
. (16)

Matrices of the form (16) are then stacked for all the edges in the graph.

The additional equation that fixes the rank of a camera P is:

z det(W ) + 1 = 0 (17)

where z is an auxiliary variable and

W =

[
P
a

]
(18)

with a random constant a. It is easy to see that, thanks to the Laplace expansion
of the determinant, we have:

∂z det(W )

∂[W ]i,j
= z(−1)i+j det(W (i,j)) (19)

where [W ]i,j is the (i, j) entry of W and W (i,j) is the 3 × 3 matrix obtained
removing row i and column j from W . Since the last row of W is constant
we compute (19) for i = 1 . . . 3 and j = 1 . . . 4 only, obtaining a vector of 12
derivatives with respect to the entries of P . The derivative with respect to the
auxiliary variable z is trivial:

∂z det(W )

∂z
= det(W ). (20)

As for the derivatives of the other additional equations, the ones that fix
scales and projective ambiguity are constant matrices of zero and ones.

C Number of Rows/Columns for Different Formulations

Trager et al. [5]. The solvability matrix of [5] is made of blocks, where each
block comprises 20 equations, and the number of blocks per node is di(di−1)/2,
where di denotes the degree of node i (see Tab. 2 in [1]). By summing over all
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the nodes in the graph, we get that the number of rows of the solvability matrix
(or, equivalently, the number of equations) can be calculated as:

e1 = 10

n∑
i=1

(d2i − di) + 15 +m = 10

n∑
i=1

d2i − 19m+ 15 (21)

where 15 + m accounts for the additional equations introduced to remove the
ambiguities and

∑n
i=1 di = 2m due to the degree sum formula [2]. Recall that m

denotes the number of edges. By the Cauchy-Schwarz inequality4 we obtain:

n∑
i=1

d2i ≥ 1

n

(
n∑

i=1

di

)2

(22)

hence, using again the degree sum formula, e1 can be bounded as

e1 ≥ 10

n
(2m)

2 − 19m+ 15 = 40
m2

n
− 19m+ 15. (23)

Hence the number of rows grows asymptotically (at least) as O(n3) for a dense
graph (i.e., m = O(n2)) and O(n) for a sparse one (i.e., m = O(n)).

Arrigoni et al. [1]. The reduced solvability matrix used by [1] is made of
blocks of 11 equations, where the number of blocks per node is di − 1 (therefore
it scales linearly in the degree of node i whereas in [5] the growth is quadratic).
Hence the number of rows is given by:

e2 = 11

n∑
i=1

(di− 1)+15+m = 11

n∑
i=1

di− 11n+15+m = 23m− 11n+15 (24)

Therefore the number of rows of the reduced solvability matrix grows asymp-
totically as O(n2) for a dense graph and O(n) for a sparse one. Away from the
limit case of a perfectly sparse graph with m = O(n), there is an advantage of
this formulation with respect to [5]. In concrete terms, it is enough that m > n
to ensure that e2 ≤ e1: indeed, after proper simplifications, (23) ≥ (24) becomes
40m2 + 11n2 ≥ 42nm > 42n2, which reduces to 40m2 > 31n2, which is always
satisfied under the hypothesis m > n. The number of columns (i.e., variables) is
the same for [5] and [1], and it is given by v1 = v2 = 16m.

Our Formulation. As explained in the main paper, our polynomial system
employs a total of e3 = 10m + 2n + 14 equations and v3 = 13n − 1 unknowns.
Hence, the number of rows of our Jacobian matrix grows asymptotically as O(n2)
for a dense graph and O(n) for a sparse one. In concrete terms, however, e3 ≤ e2
as soon as m ≥ n− 1

13 , i.e., m > n (being m and n integers).

4

(
n∑

i=1

xiyi

)2

≤

(
n∑

i=1

x2
i

)(
n∑

i=1

y2
i

)
.
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A summary is reported in Tab. 1. Note that our formulation is the only
one where the number of columns scales with the number of nodes (instead of
edges) in the graph, as ours is the first node-based method, as explained in the
main paper. Observe also that practical datasets are far from the sparse graph
approximation, as the number of edges is much larger than the number of nodes.

Table 1: Number of equations and number of unknowns for the three formulations.
The row counts are in decreasing order as soon as m > n.

Method #rows #cols
Trager et al. [5] ≥ 40m2/n− 19m+ 15 16m

Arrigoni et al. [1] 23m− 11n+ 15 16m

Ours 10m+ 2n+ 14 13n− 1
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