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1 Metrics

We compare the visual quality of our method with two baseline methods, Phys-
Gaussian [9] and DreamGaussian4D [6], by computing the Frechet Video Dis-
tance (FVD) [8] against real captured videos. We compute the FVD with a
16-frame window, 2-frame stride, based on the I3D [1] model trained on the Hu-
man Kinetics Dataset [3]. All videos are resized (short edge to 144 pixels) and
center-cropped to 128×128 pixels prior to FVD computation. We compare each
method against real captured videos, creating 272 clips per scene for evaluation.
The results are shown in Table 1.

We further compare methods using the Frechet Inception Distance (FID)
[2, 5], as shown in Table 2. FID calculation incorporates all frames across all
objects, totaling 4200 frames per method.

Table 1: Frechet Video Distance (FVD) between real captured video and PhysDreamer
(Ours) and baseline methods (PhysGaussian [9] and DreamGaussian4D [6])

FVD (↓) Alocasia Carnation Hat Rose O. Rose W. Cord Tulip Avg.

Ours 272 282 54 231 640 185 228 270.3

PhysGaussian 560 629 50 408 961 184 586 482.6
DreamGaussian 308 359 75 200 1379 210 497 432.6

2 Effect of Poisson’s ratio on synthesized motion

As mentioned in section three, we observed that Poisson’s ratio has minimal ef-
fect on synthesized motions We run simulations of the same object with identical
initial conditions but varying Poisson’s ratios (0.05, 0.1, 0.2, and 0.3). We used
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Table 2: Frechet Inception Distance (FID) between real captured video and Phys-
Dreamer (Ours) and baseline methods (PhysGaussian [9] and DreamGaussian4D [6])

Method FID (↓)

Ours 47.7

PhysGaussian 63.2
DreamGaussian 52.8

the rendered video with a Poisson’s ratio of 0.05 as the reference and compared
the PSNR of other rendered videos against it, shown in Table 3. A PSNR higher
than 40 indicates indistinguishable differences.

Table 3: PSNR of rendered videos with varying Poisson’s ratio. Results indicating
varying Poisson’s ratio has minimal effect on synthesized motions.

Scene / Poisson’s ratio 0.1 0.2 0.3

Cord 57.05 54.94 53.62
Carnation 56.89 50.14 42.93

3 Effect of simulation hyperparameters

Within the same MPM solver, changing the grid size significantly affects numer-
ical biases and dissipation, leading to drastically different synthesized motion.
For instance, for the carnation scene, the PSNR between two videos simulated
with a grid size of 48 and of 96 is only 26.5.

4 User study

We use Prolific5 to recruit participants for the human preference evaluation.
Participants span over multiple continents (primarily Europe, Africa, and North
America). We only recruited users who are fluent in English. We use Google forms
to present the survey. The survey is fully anonymized for both the participants
and the host. We attach an example anonymous survey link in the footnote6 for
reference. Reviewer can enter any text such as “test” for Prolific ID.

An interesting result in the user-study at Table-1 of the main paper is that,
under “Motion Realism”, 86% of the users indicate the Alocasia outputs are more
realistic than the actual captures. However, one would expect this to be around
5 https://www.prolific.com/
6 An example user study survey (comparing to PhysGaussian): https://forms.gle/
CZfwxGHX2LaA7KxGA. Google forms require signing in to participate, but it does not
record any participant’s identity.

https://www.prolific.com/
https://forms.gle/CZfwxGHX2LaA7KxGA
https://forms.gle/CZfwxGHX2LaA7KxGA
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50% (when two videos are indistinguishable). One possible reason is that “Mo-
tion Realism" might be too abstract and ambiguous for a user study; Thus, we
conducted an additional user study with a more specific prompt: “Compare the
two videos below. One video shows real motion. Please select the real one." The
results, shown in Table 4, exhibit a similar phenomenon. Thus, we tend to be-
lieve another potential explanation. For thin geometries, such as Alocasia leaves,
the Material Point Method tends to produce lower-frequency and slower motions
(can be observed in the video). Humans are poor at judging the naturalness of
motion and may be biased towards these smoother and slower motions when
rating “Motion Realism,” as shown in prior studies [4, 7].

Table 4: Percentage of humans who preferred our video over real captured videos in
a 2AFC human study. We repeated the study with more specific prompts, involving
100 subjects. A synthetic video that is indistinguishable from a real one will achieve
a percentage of 50%. Thus, a mean selection rate of 53.5% suggests our results are
basically as realistic as real videos.

Alocasia Carnation Hat Rose O Rose W Cord Tulip Mean

77% 56% 60% 69% 41% 47% 25% 53.5%

5 Website

We encourage the readers to explore videos in the attached website. Open the
index.html to see the website.

6 Algorithm details

We present python-style pseudo-code for accelerating material point methods
with K-Means downsampling in Algorithm 1.

index.html
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Algorithm 1 Acclerate material point method with downsampling

# x, alpha, R, Sigma, c: the position, opacity, rotation, covariance and
color of each Gaussian particle. x of shape [N, 3]

# num_drive_pts: int, top_k: int default as 8

clusters = KMeans(x, num_drive_pts)
drive_x = clusters.x # [M, 3]

# pre-compute the index of neighboor points
cdist = -1.0 * torch.cdist(x, drive_x) # [N, M]
_, top_k_index = torch.topk(cdist, top_k, -1)

# query initial velocity and material params, and simulate
drive_v = VeloField(drive_x)
drive_material = MaterialField(drive_x)
drive_x_simulated = Simulate(drive_x, drive_v, drive_material)

neighboor_drive_x = drive_x[top_k_index] # [N, top_k, 3]
neighboor_drive_x_simulated = drive_x_simulated[top_k_index]
# R: [N, 3, 3], t: [N, 3]
R_sim, t_sim = fitRigidTransform(drive_x, drive_x_simulated)

# apply transform to interpolate points
x = x + t_sim
R = R_sim @ R
# render
frame = Render(x, alpha, R @ Sigma @ R.T, c)
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