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Abstract. In this supplementary material, we provide a detailed ex-
perimental configuration (Appendix A). Furthermore, we present more
details about our adverSarially robusT distillAtion by Reducing Student-
teacHer varIance gaP (STARSHIP) in Appendix B, including the ad-
versarially pre-trained teacher models and the efficient extension with a
single-step adversary generation. Appendix C incorporates further eval-
uations of robustness. Moreover, we provide visualization results (Ap-
pendix D) and hyper-parameter analysis (Appendix E). Potential limi-
tations are also discussed in Appendix F.

A Experimental Configuration

In this section, we elaborate on the experimental settings used in this paper,
including detailed descriptions of related datasets for adversarially robust knowl-
edge distillation and the implementation details of our STARSHIP.

A.1 Dataset Description

Following the existing works on adversarially robust knowledge distillation [14,
33, 34], we conduct all the experiments on three standard datasets: CIFAR-10,
CIFAR-100 [16], and ImageNet-100 [5]. The CIFAR-10 dataset comprises a col-
lection of 60,000 color images, each with a resolution of 32 × 32 pixels, catego-
rized into 10 distinct classes. CIFAR-100 mirrors CIFAR-10 but divides images
into 100 classes, each represented by 600 samples. ImageNet-100 is a subset of the
standard ImageNet dataset, which is utilized to evaluate the transferability of
adversarial robustness in the context of real-world data. Specifically, ImageNet-
100 contains 130K color images spanning a subset of 100 classes chosen from the
⋆ Corresponding authors.

https://orcid.org/0000-0002-6232-9157
https://orcid.org/0000-0002-6340-5289
https://orcid.org/0009-0000-2512-4438
https://orcid.org/0000-0002-4480-169X


2 Dong et al.

original 1,000 classes. For robustness transfer with auxiliary data (referenced in
Table 5), we incorporate 1 million synthetic images generated by the Denoising
Diffusion Probabilistic Model (DDPM) [13], explicitly tailored for the CIFAR-10
and CIFAR-100 datasets in line with the established protocols [6, 21,22].

A.2 Implementation Details

Following the experimental settings in previous works [14, 33, 34] and Robust-
Bench [4], we adopt ResNet-18/34 [12], MobileNetV2 (MNV2) [23], and Wide-
ResNet-28-10 (WRN-28) [31] for both the teacher and student models. Beyond
these deep Convolutional Neural Networks (CNNs), we also incorporate Vision
Transformers (ViTs) [11] as the teacher architecture for robustness transfer to
lightweight models. Our experiments mainly concentrate on two principal knowl-
edge distillation settings: (1) distillation from a large-scale teacher model to a
lightweight but more efficient student model, and (2) self-distillation, where the
teacher and student models are of identical network architecture.

For optimizing network parameters during adversarially robust knowledge
distillation, we employ the Stochastic Gradient Descent (SGD) as the optimiza-
tion algorithm, characterized by a momentum factor of 0.9, a weight decay factor
of 5 × 10−4, and a cyclic learning rate tuning strategy [25], peaking at a learn-
ing rate of 0.1. The weighting hyper-parameters β in Eq. (4&7) and γ for power
normalization are fixed at values of 0.8 and 0.5, respectively. Furthermore, we de-
termine the loss weighting coefficients λ1 = 1.0, λ2 = 2.0, and λ3 = 1.0 across all
experimental setups. Detailed analysis of different settings for hyper-parameters
can be found in Appendix E. For robustness evaluation, we mainly focus on the
ℓ∞-norm threat model with a maximum perturbation intensity of ϵ = 8/255,
except where explicitly noted otherwise. During adversarially robust knowledge
distillation, we utilize the Projected Gradient Descent (PGD) method [17] with
n = 10 iteration steps (step size=α = 2/255) to generate adversarial samples.
Recall that our original STARSHIP mainly relies on the standard adversary
generation strategy during the robustness transfer (see Eq. (2)), where the stu-
dent’s prediction on adversarial samples is optimized to deviate from the fixed
prediction of the teacher model with respect to their clean counterpart. Despite
its training efficiency, such a training scheme overlooks the gradient flow of the
teacher model, leading to a suboptimal robustness transfer. Following [14], we
introduce an adaptive version of our STARSHIP, dubbed Ada-STARSHIP, which
replaces the fixed prediction alignment reference (clean samples) with their ad-
versarial counterparts for the teacher model. In other words, this adaptive adver-
sary generation scheme maximizes the prediction gap between the teacher and
student models with regard to the same adversary (see Eq. (3)). To ensure a fair
and comprehensive robustness evaluation, we conduct all the evaluations in ac-
cordance with the adaptive attack principle. All the experiments are conducted
based on a single NVIDIA Tesla A100 GPU.
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B Details of STARSHIP

In this section, we provide further details of our STARSHIP method, highlight-
ing the adversarially pre-trained teacher models and introducing an efficient
extension of our method in the context of single-step adversary generation.

B.1 Adversarially Pre-trained Teacher Models

In this study, we derive all the teacher models from scratch via adversarial train-
ing. We mainly resort to two standard adversarial training methods, TRADES
[32] and SCORE [20], to construct robust teacher models for CNN architectures.
Specifically, TRADES [32] minimizes a surrogate upper bound of the robust risk
by aligning the predictions between clean samples and their adversarial counter-
parts using the KL divergence, as follows:

min
θt,θ

′
t

E(x,y)∼D

[
LCE(gθ′

t
(fθt(x)), y)+ω · max

∥δ∥∞<ϵ
LKL(gθ′

t
(fθt(x))∥gθ′

t
(fθt(x+ δ)))

]
, (13)

where ω ≥ 0 controls the trade-off between natural performance and adversarial
robustness, with higher ω values prioritizing adversarial robustness. We adopt
ω = 6.0, following the original configuration of TRADES [32]. Furthermore, to
mitigate the inductive bias towards local invariance during adversarial training,
SCORE [20] theoretically justifies the effectiveness of the squared error variant of
Eq. (13), replacing the KL divergence. Note that the adversarial training process
of SCORE [20] is based on a hybrid dataset composed of the original dataset
associated with auxiliary generated data for improved robustness. During the
adversarially robust knowledge distillation, we merely incorporate the original
training dataset unless stated otherwise. For teacher models based on ViT ar-
chitectures, we utilize PGD-based adversarial training [17], augmented with the
strategies of attention random dropping and perturbation random masking as
introduced in [18]. Specifically, we adopt ViT-Base [8] and DeiT-Small [26] as
architectures of teacher models for adversarially robust knowledge distillation.

B.2 Single-step Robust Distillation

In this section, we elaborate on an efficient extension with the single-step ad-
versary generation strategy to reduce the computational cost in adversarially
robust knowledge distillation. Generally, the predominant computational over-
head in robustness transfer historically stems from the multi-step adversary
generation, necessitating multiple gradient backpropagations. Although previ-
ous studies have shown the feasibility and the potential of single-step adversary
generation during adversarial training [1, 15, 30], rare efforts have been made
in the context of efficient robustness transfer. To relieve such a computation-
ally intensive demand, we made the first attempt to explore adversarially robust
knowledge distillation with the single-step adversary generation strategy. Specif-
ically, we replace the multi-step adversary generation in STARSHIP (see Eq. (2))
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with its single-step counterpart x̃ = x+ δ̃ as below:

δ̃ = ψ
[
δ0 + α′ sign

(
∇δ0LKL

(
gθ′

t
(fθt(x))∥gθ′

s
(fθs(x+ δ0))

))]
, (14)

where δ0 is the randomly initialized perturbation drawn from a certain distri-
bution Ω, while ψ[·] denotes the projection operator that constrains the adver-
sarial perturbation within the ℓ∞-norm hypersphere. The single-step variant of
our Ada-STARSHIP can be easily obtained by replacing the fixed prediction
alignment reference gθ′

t
(fθt

(x)) with the single-step adversary gθ′
t
(fθt

(x+ δ0)).
Furthermore, the extension of other robustness transfer methods can also be
achieved in such an efficient scheme. In particular, N-FGSM [15] has emerged
as one of the most effective single-step strategies for robustness enhancement
by adding strong noise augmentations to regularize the loss landscape, which
can be conducted by simply disabling the projection operator. Highlighted by
its scalability and efficiency, we investigate the extension of robust distillation
methods with N-FGSM [15] in Table 6. Despite a minor performance drop com-
pared to its multi-step counterpart (see Table 1), single-step robust distillation
can achieve overall better training efficiency by reducing the gradient computing
iterations. In addition, we show that the single-step extensions of our STARSHIP
method and its variant can also maintain comparable efficacy on both clean and
adversarial samples in comparison with their multi-step counterparts.

C Additional Robustness Evaluations and Analyses

In this section, we provide additional experimental results to further justify the
efficacy and generalization ability of our method, including comparisons with
adversarial training, the extension to black-box model extraction, and black-
box robustness evaluations. Moreover, we incorporate further analyses of our
STARSHIP method w.r.t. different distance types for statistics alignment. All
the settings are consistent with the main text.

C.1 Comparisons with Adversarial Training Baselines

Table 9: Comparison between our STARSHIP
method (WRN-28 → ResNet-18) with adversarial
training approaches. We report both clean and ro-
bust accuracies (%) on CIFAR-10/100.

Method CIFAR-10 CIFAR-100

Clean PGD AA Clean PGD AA

PGD-AT [17] 83.80 51.40 47.68 57.39 28.36 23.18
TRADES [32] 82.45 52.21 48.88 54.36 27.49 24.19
MART [28] 82.20 53.94 48.04 54.78 28.79 24.58
HAT [21] 84.86 52.04 48.85 58.73 27.92 23.34

STARSHIP 86.47 57.45 53.78 61.54 32.24 27.46

To further justify the effi-
cacy of robustness transfer
from large-scale teacher mod-
els, we compare our STAR-
SHIP method with adver-
sarial training baselines that
build robust models from
scratch. As shown in Table 9,
our method can significantly
outperform adversarial train-
ing methods in terms of both
clean accuracy and adversarial robustness. This also indicates that the guidance
of a well-optimized and large-scale teacher model can lead to better performance
compared with the sole supervision by one-hot labels.
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C.2 Black-box Model Extraction

Black-box model extraction [19,27] has been recognized as one of the most fun-
damental security threats to existing deep learning-based systems. Specifically,
such an attack scheme can effectively recover an online black-box model without
access to its network parameters or even training data. Different from the data-
relevant knowledge transfer setting we evaluated in the main text, where the
data for pre-training the teacher model and the distillation are from the same
domain or even identical, we primarily focus on a data-irrelevant knowledge dis-
tillation setting to transfer the data-independent robustness from the teacher
model to the student model. Table 10: Black-box model extraction to distill the

pre-trained teacher model (WRN-28) to the student
model (ResNet-18) on CIFAR-10/CIFAR-100. We
report both clean and robust accuracies (%).
Pre-training

Dataset
Distillation

Dataset Method Clean PGD AA

CIFAR-10 CIFAR-100

RSLAD [34] 69.86 42.65 37.24
CRDND [29] 69.15 42.93 37.50
GACD [2] 69.93 43.16 37.89
AdaAD [14] 70.30 43.47 38.24

STARSHIP 72.19 45.76 41.13

CIFAR-100 CIFAR-10

RSLAD [34] 43.57 22.71 18.29
CRDND [29] 44.20 22.13 17.82
GACD [2] 43.87 22.90 18.40
AdaAD [14] 44.98 23.66 18.92

STARSHIP 45.73 25.31 20.96

To investigate the cross-
domain generalization ability
of our STARSHIP method,
we here explore the exten-
sion of adversarially robust
knowledge distillation in the
context of black-box model
extraction. Specifically, the
pre-training dataset for the
teacher model is completely
irrelevant to the dataset used
for knowledge distillation to
simulate the black-box sce-
narios of model extraction, where these two datasets have disjoint image cate-
gories. Here, we conduct model extraction in a pairwise scheme between CIFAR-
10 and CIFAR-100 datasets, as shown in Table 10. Note that the evaluation
is conducted on the pre-training dataset. As observed, our STARSHIP consis-
tently achieves better clean accuracy as well as adversarial robustness in such
a data-irrelevant scenario. This further indicates that our method can promote
the transfer of generalizable robust knowledge rather than the robust knowledge
that is strongly correlated with the data distribution.

C.3 Black-box Adversarial Robustness Evaluation

Table 11: Black-box robustness against iterative
& non-iterative adversarial attacks when distilling
from a large-scale teacher model on CIFAR-10.

Method ResNet-18 MNV2
FGSM PGD MIM FGSM PGD MIM

ARD [9] 67.87 66.77 66.56 66.72 65.32 65.04
IAD [33] 67.59 66.30 66.25 65.99 64.81 64.72

RSLAD [34] 68.46 67.27 66.99 68.56 67.05 66.94
AdaAD [14] 69.04 67.68 67.46 68.25 66.90 66.58

STARSHIP 70.59 69.28 69.01 70.06 68.66 68.39

In addition to the white-box
robustness evaluation in the
main text, we here explore
the black-box adversarial ro-
bustness of the student model
distilled via our STARSHIP
method (see Table 11). Fol-
lowing the evaluation setting
from [3], we conduct black-
box transferable adversarial
attacks using iterative and non-iterative attack approaches. The adversarially
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pre-trained teacher model is adopted as the substitute model for adversary gen-
eration. We can observe that our method can simultaneously achieve better
black-box robustness against both iterative (PGD [17] and MIM [7]) and non-
iterative (FGSM [10]) adversarial attacks compared to other adversarially robust
knowledge distillation approaches.

C.4 Performance w.r.t. Diverse Settings of LΩ

Table 12: Diverse sub-matrices for gradient
blocking in LΩ of our STARSHIP during self-
distillation on CIFAR-10. We report both
clean and robust accuracies (%).

Gradient
Blocking

ResNet-18 MNV2

Clean PGD AA Clean PGD AA

ψ11 81.14 55.65 52.29 80.20 54.23 50.18
ψ12 & ψ21 81.46 54.86 51.60 80.55 54.01 49.94

ψ22 81.78 54.33 51.38 80.83 53.78 49.61
No Blocking 81.97 55.72 52.42 80.97 54.28 50.46

We have shown the superior per-
formance brought by the statis-
tics alignment LΩ (Eq. (10))
within the student model under
the self-distillation setting, where
the teacher and student models
share the same network architec-
ture. To provide a better under-
standing of our method, we here
explore the effect of each sub-matrix (statistical interaction) in LΩ (Eq. (10))
by blocking its gradient when optimizing such an alignment loss. Specifically,
we report both clean and robust accuracies when detaching the gradient flow
of both the covariance and gram sub-matrices extracted by ψij(·) in LΩ during
our robust knowledge distillation (see Table 12). As observed, blocking the gra-
dient of statistical interactions related to adversaries (ψ12, ψ21, and ψ22) leads
to a drop in adversarial robustness, while eliminating the effect of the statistical
interaction between clean samples (ψ11) suppresses the natural performance.

C.5 Robust Distillation with Diverse Single-step Strategies
Table 13: Extension of robust distillation (WRN-
28 → ResNet-18) with diverse single-step adver-
sary strategies on the CIFAR-10 dataset. We re-
port both clean and (Auto-Attack) robust accuracies
(%) with the average training time per epoch.

Type Strategy Method Clean Robust Time (s)

Teacher — SCORE [20] 88.61 61.03 —

Student

RS-FGSM

IAD [33] 84.07 46.11 68
RSLAD [34] 85.16 48.30 42
AdaAD [14] 86.35 49.74 112

STARSHIP 86.93 50.58 50
Ada-STARSHIP 87.60 51.14 121

GradAlign

IAD [33] 83.92 46.62 106
RSLAD [34] 84.77 48.69 85
AdaAD [14] 85.87 50.35 230

STARSHIP 86.50 51.22 97
Ada-STARSHIP 87.34 51.83 247

In addition to the exten-
sion with the single-step ad-
versary generation strategy
(N-FGSM [15]) we discussed
in the main manuscript, we
also investigate such an ef-
ficient extension via other
single-step strategies for ad-
versarially robust knowledge
distillation. Specifically, we
adopted RS-FGSM [30] and
GradAlign [1] for adversary
generation and applied them
to different robust distillation
approaches when distilling from a large-scale teacher model (See Table 13). As
observed, our STARSHIP method and its adaptive variant can effectively achieve
superior performance on clean samples and their adversarial counterparts when
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efficiently combing with different single-step adversary generation strategies, fur-
ther highlighting the generalization ability of our proposed method.

C.6 Diverse Objective Functions for Parameter-level Perturbations
Table 14: Diverse settings for the parameter-
level perturbation and its corresponding opti-
mization strategy (Eq. (7)) within our STAR-
SHIP (WRN-28 → ResNet-18) on CIFAR-10.
We report both clean and robust accuracies (%).

Setting Adv. Optim. Nat. Optim.

Clean PGD AA Clean PGD AA

w/o CFA 85.64 57.11 53.26 85.73 56.54 52.70
w/o AFA 86.28 55.21 51.59 86.40 54.84 51.34
w/o FCA 85.75 56.53 52.66 85.52 56.13 52.28

w/ All Modules 86.47 57.45 53.78 86.18 56.89 53.22

We here investigate the contri-
bution of three main components
within our parameter-level per-
turbations (Eq. (7)): (1) Clean
Feature Alignment (CFA), (2)
Adversarial Feature Alignment
(AFA), and (3) Feature Covari-
ance Alignment. Furthermore, we
evaluate the efficacy of our adver-
sarial optimization scheme at the
parameter level against the natural optimization strategy. As shown in Table 14,
we report the accuracy of clean samples and their adversarial counterparts w.r.t.
different combinations of the component modules and optimization strategies.
As observed, both CFA and AFA significantly aid the feature projection head in
aligning the feature spaces of the teacher and student models, thereby enhancing
the efficacy of knowledge transfer. The feature-level covariance alignment further
improves both natural performance and adversarial robustness. Note that both
the natural and adversarial optimization strategies can achieve excellent per-
formance on clean and adversarial samples, while the adversarial optimization
enhances the flatness of the parameter-loss landscape, thus reducing the robust
generalization gap.

C.7 Aligning Variances Rather than Reducing Variances
Table 15: Diverse distillation strategies for our
STARSHIP method (WRN-28 → ResNet-18). We
report both clean and robust accuracies (%).

Distillation Strategy CIFAR-10 CIFAR-100

Clean PGD AA Clean PGD AA

Baseline (Eq. (4)) 84.13 54.49 51.27 58.52 32.43 27.23
Reducing Feature Variance 83.43 55.25 51.76 57.94 33.19 28.10
Reducing Prediction Gram 83.98 55.03 51.60 58.41 32.96 27.65

Reducing Both 84.19 55.47 51.96 58.77 33.25 28.32
Ours (Aligning Variances) 86.47 57.45 53.78 61.54 34.45 29.30

In this paper, we mainly fo-
cus on aligning the variances
in terms of features and pre-
diction scores (Gram matri-
ces) between the teacher and
student models. It has been
noted that the robust teacher
model typically exhibits a
lower variance gap compared to the student model, as illustrated in Figure 1. This
observation raises a critical question: Could merely reducing variances, rather
than aligning them with those of the teacher model, also improve the robustness
transfer? To investigate this query, we introduce regularization terms aimed at
reducing the values of the feature-level covariance matrix or the prediction-level
Gram matrix into our baseline method (i.e., prediction alignment in Eq. (4)), as
shown in Table 15. As observed, reducing the feature variances or the prediction
Gram variances does indeed improve the model robustness, which is accompanied
by a significant trade-off with a decrease in clean accuracy. Conversely, aligning
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these variances of the student model to mirror those of the teacher model can ob-
tain a better trade-off between natural performance and adversarial robustness
in comparison with merely reducing variances.

Table 16: Feature variance gap and error bars on
CIFAR-10/100 (WRN-28 → ResNet-18).

Type Method
CIFAR-10 CIFAR-100

Clean AA FVG Clean AA FVG
Teacher SCORE [38] 88.61 61.03 13.95 63.64 31.13 11.53

Student

ARD [18] 84.35 49.40 37.42 58.20 26.02 19.79
IAD [59] 83.46 49.09 37.54 57.35 26.22 19.54

RSLAD [60] 84.42 51.36 35.73 57.97 27.52 18.37
AKD [34] 86.04 50.11 36.65 60.79 26.93 18.97

AdaAD [25] 86.38 52.36 29.34 61.26 27.46 18.62
STARSHIP 86.47 53.78 27.15 61.54 29.30 16.02

Ada-STARSHIP 87.04 54.47 25.89 62.19 28.28 16.90
STARSHIP 86.45±0.09 53.76±0.12 - 61.56±0.07 29.35±0.13 -

Ada-STARSHIP 87.01±0.12 54.42±0.16 - 62.17±0.05 28.25±0.11 -

Feature variance gap &
error bar. We report ac-
curacy and Feature Variance
Gap (FVG, %) in the table
(right) (WRN-28 → ResNet-
18, ℓ∞-norm ϵ=8/255). Our
method yields a low variance
gap and high robustness. All
baselines and ours share a single seed (same split). The error bars (last 2 rows
in cyan) are computed on 10 random splits.

Table 17: Robustness of ViT students on
CIFAR-10/100 (WRN-28 → ResNet-18).

Type Method
CIFAR-10

Clean PGD AA
Teacher AT-PRM [36] 83.98 53.10 49.66

Student

ARD [18] 81.43 51.05 47.12
IAD [59] 81.15 51.59 47.46

RSLAD [60] 81.13 51.87 47.66
AKD [34] 81.78 51.36 47.27

AdaAD [25] 82.16 52.14 47.84
STARSHIP 82.74 52.30 48.08

Ada-STARSHIP 83.19 52.63 48.31

Robustness of ViT-based stu-
dents. We have reported the adver-
sarially robust knowledge distillation
from a ViT-based teacher model in
the main text. We here also evalu-
ate the adversarial robustness of ViTs
as the student model in the table
right (ViT-B → ViT-S, ℓ∞-norm
ϵ = 8/255). As expected, ViT-based
students do not perform well on smaller datasets. However, our STARSHIP
method still achieves the best performance in terms of clean examples and their
adversarial counterparts.

D Visualization

RSLAD

(Student)

IAD

(Student)

SCORE

(Teacher)

STARSHIP

(Student)

AdaAD

(Student)

Fig. 6: Saliency visualizations of both the teacher
and student models distilled via different methods.

In addition to the attention
visualizations shown in the
main text, we also incorpo-
rate saliency visualizations of
adversarial examples against
different robustness trans-
fer methods derived from
the CIFAR-10 dataset, as il-
lustrated in Fig. 6. These
saliency maps are generated
via the SmoothGrad tech-
nique [24], which smoothens
the raw gradient of the class
score function across the in-
put domain. Recall that the
adversary generation is based on the PGD method with the maximum pertur-
bation intensity of ϵ = 8/255. To maintain a fair and comprehensive analysis, we
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Fig. 7: Sensitivity analyses of our STARSHIP method (WRN-28 → ResNet-18) with
diverse hyper-parameter settings. We report both the clean accuracy and (Auto-Attack)
robust accuracy on CIFAR-10 when tuning diverse loss weighting factors during robust
distillation from a large-scale teacher model to a lightweight student model.

conduct adaptive attacks for all the models to create a corresponding adversarial
counterpart for each clean example.

Notably, the saliency maps generated from the robust student model, utiliz-
ing our STARSHIP method, demonstrate a higher degree of consistency with
saliency maps of the teacher model compared to other robust distillation ap-
proaches. Such a saliency alignment also indicates the efficacy of our STAR-
SHIP method in capturing and transferring the adversarially robust knowledge
from the teacher model. In the meantime, the saliency regions are primarily
concentrated on the discriminative features of the target object, suggesting the
implicit alignment between the transferred knowledge and human vision. These
visual observations lend further support to the robustness of our distilled student
models against unforeseen adversarial examples.

E Hyper-Parameter Analyses

We have indicated that the hyper-parameter β controls the trade-off between
natural performance and adversarial robustness in the main manuscript. To fur-
ther deepen the comprehension of our work, we delve into the analyses with
respect to the efficacy of key hyper-parameters in our STARSHIP method. As
shown in Fig. 7, we report both clean and (Auto-Attack) robust accuracy of our
method under diverse hyper-parameter settings. Note that all hyper-parameters
in this study were tuned based on a tiny subset of the CIFAR-10 training set
to ensure fairness. This hyper-parameter configuration is subsequently applied
across other datasets to maintain consistency. We can easily observe a perfor-
mance boost on both clean and adversarial examples when enlarging the weight-
ing for feature covariance alignment (λ1) and statistics alignment (λ3). In the
meantime, appropriately choosing the loss weighting factor λ2 for adversarially
robust knowledge distillation can also lead to a reasonable trade-off between
natural performance and adversarial robustness.
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Fig. 8: Confusion matrices of our STARSHIP method (WRN-28 → ResNet-18) from
CIFAR-10 on clean samples and their PGD-based adversarial samples using ResNet-18.

F Limitations

To ensure a comprehensive evaluation, we discuss the potential limitations of our
work and the corresponding solutions. For error analyses, we provide a confusion
matrix analysis of our method under different attack strengths on CIFAR-10
(see Figure 8). The confusion matrix suffers from a more severe disruption when
the attack strength (perturbation radius) increases. In other words, adversarial
examples with a higher attack strength can deceive the model, leading to an
increase in off-diagonal elements of the confusion matrix. However, this trend is
not unique to our model but rather a common challenge for all the adversarially
robust models. The adoption of larger models and the augmentation with more
data have been identified as effective solutions to counteract such a robustness
degradation. In this paper, we primarily focus on facilitating robust knowledge
transfer from large-scale models to lightweight models, thereby enhancing their
practical deployability and adaptability in real-world settings.

Another limitation lies in the additional training cost of our robust knowl-
edge distillation method, stemming from building the feature projection head.
To mitigate such a potential drawback, we extend our method with single-step
adversary generation to further improve its efficiency, as presented in Table 6 of
the main text. Our method can achieve better training efficiency while maintain-
ing performance efficacy. Kindly note that our method does not incur additional
test-time computational costs compared to other approaches, as our test-time
classification model shares the same architecture with classifiers of other meth-
ods, which ensures that our method remains viable for practical deployment.
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