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Abstract. Recent advances in learning multi-modal representation have
witnessed the success in biomedical domains. While established tech-
niques enable handling multi-modal information, the challenges are posed
when extended to various clinical modalities and practical modality-
missing setting due to the inherent modality gaps. To tackle these, we
propose an innovative Modality-prompted Heterogeneous Graph for Omni-
modal Learning (GTP-40), which embeds the numerous disparate clini-
cal modalities into a unified representation, completes the deficient em-
bedding of missing modality and reformulates the cross-modal learning
with a graph-based aggregation. Specially, we establish a heterogeneous
graph embedding to explicitly capture the diverse semantic properties
on both the modality-specific features (nodes) and the cross-modal rela-
tions (edges). Then, we design a modality-prompted completion that en-
ables completing the inadequate graph representation of missing modal-
ity through a graph prompting mechanism, which generates hallucina-
tion graphic topologies to steer the missing embedding towards the intact
representation. Through the completed graph, we meticulously develop
a knowledge-guided hierarchical cross-modal aggregation consisting of a
global meta-path neighbouring to uncover the potential heterogeneous
neighbors along the pathways driven by domain knowledge, and a local
multi-relation aggregation module for the comprehensive cross-modal in-
teraction across various heterogeneous relations. We assess the efficacy
of our methodology on rigorous benchmarking experiments against prior
state-of-the-arts. In a nutshell, GTP-40 presents an initial foray into the
intriguing realm of embedding, relating and perceiving the heterogeneous
patterns from various clinical modalities holistically via a graph theory.
Project page: https://gtp-4-o.github.io/.

Keywords: Biomedical Data - Multimodal Learning - Graph Networks

1 Introduction

Each modality has its own perspective to reflect the specific data characteris-
ties [30, 33, 35,75, 87]. Integrating multi-modal data empowers the models with
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Fig.1: Methodology Comparison. Unlike (a) prior methods, (b) our framework
enables learning unified omni-modal representation from various clinical modalities
with modality missing and explicit capture of the cross-modal relations through the
established heterogeneous graph representation.

various insights into the conditions of subjects at the macroscopic, microscopic,
and molecular levels, and allows for an accurate and comprehensive disease di-
agnosis [40,44,52,68,69,77]. For instance, multimodal fusion of various imaging
techniques has significantly improved gastrointestinal lesion detection and char-
acterization in endoscopic scenes [28,32,49,56]. Similarly, incorporating genomic
information with pathological images can improve the prediction accuracy of can-
cer grading [5,6, 16,72, 76]. A relevant task, survival prediction, which aims to
predict the time interval to a significant event such as death or disease relapse,
can also benefit from such multi-modal inclusion [7]. Besides, the cell graphs
constructed by the cell nuclei segmentation of pathological images, are shown
to provide more fine-grained microscopic information [71]. Recent advances in
visual language models also sparks the works in learning from biomedical im-
ages and texts [30], whereby the diagnostic texts usually encapsulates abstract
semantic information [11, 13]. These progress presents potential for extending
the capacity boundary of biomedical multi-modal models to omni-modal repre-
sentation to handle a broader range of clinical modalities.

Established multimodal methods typically follow the principle that first ex-
tracts uni-modal features, then learns cross-modal relations in paired multimodal
data [12,60,73,80]. Early researches design meticulous fusion techniques for mul-
timodal information and wish to maximize the benefits of each modality [19,41].
Due to the imbalanced learning process with inherent modal disparity and het-
erogeneity [22,81,82], recent efforts pivot towards improving collaborative learn-
ing of multiple modalities by balancing and adjusting learning of each modal-
ity [15,59,74]. Through deriving the modality-relevant weighting factors, these
methods dynamically modulates the learning and fusing of multimodal informa-
tion on features [74], gradients [59], attentions [15,50], etc.

Despite the success in alleviating the modality gap, the challenge remains
severe when applied to (especially a broad range of) biomedical modalities, pri-
marily due to the two featured challenges. The first challenge lies in the large
semantic heterogeneity exhibiting on biological modalities. A straightforward ex-
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ample is that an “dog” in natural images shares similar object-related semantics
its sound, while the semantic relation and local correspondence between genomic
profiles and pathological images is highly ambiguous [5, 6,43, 53, 72]. Through
prior methods employ optimal transport [72] or cross-modal attention [7] to
capture fine-grained correlation across genes and images, they still overlook the
heterogeneity in a high-order space, i.e., relations across modalities. Every two
modalities have their own relation with specific semantics and attributes. As
shown in Fig. 1, the relation across images and genomics is semantically related
to “express”, while that across images and texts could be abstracted as “depict”.
Therefore, these observations inspire us to introduce a unified non-Euclidean rep-
resentation that explicitly captures the heterogeneous attributes on both modal
features and cross-modal relations.

Secondly, in clinical practice, it is common to encounter partial absence in
some modalities due to privacy and ethical considerations. The limitations in
data collection technology and the concerns surrounding bioinformatics security
make it more challenging to access all the data modalities. However, most multi-
modal methods have a common assumption on the data completeness [60,73,80].
Once a modality is missing regardless of training or testing, the multimodal fu-
sion becomes unreachable, which leads to sub-optimal performance [26]. There-
fore, we are committed to designing algorithms to adaptively complete the fea-
ture space messed up by the missing of modality such that all the representation
from the missing and existing modality could be handled in a unified fashion.

To address the aforementioned challenges, we propose a modality-prompted
heterogeneous graph framework for omni-modal learning (GTP-40) that allows
unifying representations under various biomedical modalities with potential modal-
ity missing. Specially, we establish a heterogeneous graph embedding [38,39,51]
to explicitly capture the heterogeneous attributes on both modal features and
cross-modal relations. Then, we design a modality-prompted completion that
completes the deficient graph embedding of missing modality through a novel
graph prompting module, which generates hallucination nodes to steer the em-
bedding towards the original complete space. Through the completed graph, we
meticulously develop a knowledge-guided hierarchical aggregation that includes
a knowledge-derived global meta-path neighbouring to capture the potential
heterogeneous neighbors, and a local multi-relation aggregation for the compre-
hensive interaction of modal information across various heterogeneous relations.
GTP-40 presents the first exploration in learning unified representations from
various heterogeneous clinical modalities including genomics, pathological im-
ages, cell graphs, and diagnostic texts. Our contributions are as follows:

— This paper introduces the new problem of learning unified multimodal rep-
resentations from various diverse clinical modalities, and presents the first
effort to embed and relate heterogeneous multimodal features through a
graph representation and aggregation.

— We propose a modality-prompted completion module to complete the cor-
rupted graph embedding of the missing modality by a graph prompting
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strategy, which generates hallucination nodes to steer the missing embed-
ding towards the complete representation.

— We present a knowledge-guided hierarchical cross-modal aggregation, em-
ploying a global meta-path neighbouring to capture heterogeneous neighbors,
and a local multi-relation aggregation module for information interaction
across various heterogeneous relations.

— Extensive experiments on comprehensive benchmarks of disease diagnosis in-
cluding pathological glioma grading and survival outcome prediction exhibits
the efficacy of our method against prior state-of-the-arts.

2 Related Work

Biomedical Multimodal Learning. Utilizing multimodal data has gained sig-
nificant attention for accurate and comprehensive imaging analysis [9,36,55,87]

and diagnosis [2,10,64,76]. For instance, the comprehensive features from patho-
logical images [57,89], genomics [46,48,78|, are employed in joint for an accurate
cancer-related diagnosis, e.g. glioma grading [14] and survival analysis [7]. Mean-

while, with the eGTP-4once of Visual Language Models (VLMs), much efforts
have been devoted to enhancing the recognition and analysis ability of vision
models by further incorporating the textual information from clinical text re-
ports [30,83]. Inspired by the trends, this paper introduces the new problem of
learning unified features from various disparate clinical modalities, including ge-
nomics [7,46], pathological images [57], cell graphs [71] and text descriptions [33].

Handling the modality heterogeneity is critical when integrating multimodal
information [47]. Early works focus on studying early or late fusion meth-
ods [5,19,21,61,66], which integrates the predictions from individually separated
models for the final decision. However, these methods suffer from either neglect-
ing intra-modality dynamics [47] or failing to fully relating cross-modal infor-

mation. Recent progress in intermediate fusion [6,25] has shown promise, which
learns uni-modal features and capture cross-modal interactions at the same time,
by leveraging the power of cross-modal attention [6,54,72,86]. However, they try

to model all potential cross-modal relations with the learned attentions. Different
from them, we present to explicitly capture the heterogeneity of modal features
and cross-modal relations resorting to a heterogeneous graph space.
Graph Representation in Pathology. Graph representation has shown its
promise in the field of pathology analysis [3, 4, (7]. Following previous efforts
of Multiple Instance Learning (MIL) that split the high-resolution whole slide
pathological images (aka., WSIs) into a bag of instances and pre-define the con-
nective local areas in the Euclidean space, recent graph-based methods [3, 4,
,85] models the interactions among instances flexibility via the graphs topol-
ogy. For instance, PatchGCN [4] models pathological images with homogeneous
graphs, and regress survival data with a graph convolutional neural network
(GCN) [23]. GTNMIL is designed as a graph-based MIL using graph transformer
networks [85]. Recent methods [3,17] extend the prior practice to handling WSTs
with heterogeneous graphs, introducing heterogeneity in each patch by different
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Fig. 2: Pipeline Overview of GTP-40. We instantiate the omni-modal biomedical
features (Sec. 3.1), and embed them onto (a) the heterogeneous graph space (Sec. 3.2).
Then, we introduce the modality-prompted completion via graph prompting to
complete the missing embedding (Sec. 3.3). After that, we design (c) the knowledge-
guided hierarchical aggregation from a global meta-neighbouring to uncover the het-
erogeneous neighbourhoods and a local multi-relation aggregation to interact features
across various heterogeneous relations (Sec. 3.4).

resolution levels [17], or semantic representations via pretext tasks [3]. However,
these methods only considers heterogeneity in the image modality, while the
more challenging multimodal scenario is left to study. To fill this gap, this paper
explores the graph representation in a way more complex setting, i.e., learning
from various disparate clinical modalities with significant heterogeneity.

3 Method

Overview. After performing data processing and feature extraction (Sec. 3.1),
the omni-modal embedding for a patient subject could be represent by a 4-tuples
of four modalities, including genomics (G), pathological images (I), cell spatial
graphs (C) and diagnostic texts (T), X = {X¢g, X1, Xc, X1}, with different
number of instances in each modality, while the common dimension d. Then,
we establish the heterogeneous graph representation G by transforming modal
features to the graph space (Sec. 3.2). After that, the modality-prompted com-
pletion is performed, which employs a graph prompting g4(-) to transform the in-
complete graphic embedding to a prompted and completed representation g4(G)
(Sec. 3.3). Afterwards, we conduct a knowledge-guided hierarchical aggregation
that is parameterized by M, including a global neighbouring via knowledge-
derived meta-paths @ , and a local multi-relation aggregation along various het-
erogeneous relations (Sec. 3.4). The final aggregated features M o g4(G) end up
with forwarding a task-specific head H7 to obtain the specific prediction for task
T, based on which we we optimize the network parameters M, H7 and prompt
parameters g4 w.r.t. the task loss £. (Sec. 3.5).
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3.1 Data Processing and Feature Extraction

Genomic Profiles. Following [5], the genomic profiles that we use includes Copy
Number Variation (CNV), bulk RNA-Seq expressions and mutation status [5].
We merge the mutation status and CNV and feed it and RNA-Seq as separate
groups of gnomic data into Self-Normalizing Neural Network (SNN) [24] to get
the embedding X € RV¢*4 where Ng equals to the number of genomic groups.
Pathological Images. Following [0, (3], we divide WSIs into a series of non-
overlapping patches, employ a ImageNet pretrained ResNet-50 to extract the
features from each patch, and feed them into a projection layer to obtain X; €
RN x4 where Ny is the number of patches.

Cell Spatial Graphs. Cell graph representations explicitly capture selected
fine-grained features of cells [58]. We utilize the procedure in PathomicFusion [5]
to segment cells for each slide, curate graph topology. and use a graph convolu-
tional network (GCN) [23] backbone to obtain the aggregated graph embedding,
as Xo € RNeXd where N¢ equals to the number of curated cell graphs.

Text Descriptions. As no actual medical reports are provided in the used ma-
terials, we employ an open-source multimodal Large Language Model (LLM),
MiniGPT-4 [88] to generate the customized text descriptions for each patholog-
ical image®. The prompt is customized as follows.

Prompt: “This is a pathology slide with glioma cells. Write a caption for this
slide based on the following properties: @ size and shape of cells, @ color of cells,
O growth pattern and cellularity of cells, @ uclear atypia and pleomorphism of
cells, ® necrosis of cells, @ microvascular proliferation of cells, @ mitotic activ-
ity of cells.”

We obtain several sentences for each slide, like: “Some cells show signs of necro-
sis, with dark spots in the cytoplasm”. We take each sentence as a modal instance,
and employs a MedBERT [(2] to obtain the embedding X7 € R¥7 X4 where Ny
equals to the number of curated sentences.

3.2 Heterogeneous Graph Embedding

With the obtained modal features X = {X¢, X1, X¢, X7} with the same dimen-
sion d, the heterogeneous graph embedding could be established by a feature to
graph transformation. Formally, a heterogeneous graph space is formulated by
G ={V,E, A, R}, where V and & represents the set of entities (i.e., vertices or
nodes) and relations (i.e., edges) that has been established in the theory of a
classic directed graph. The further introduced A and R represent the attribute
set of nodes and edges, respectively, by which we can explicitly define the hetero-
geneous properties for the features of modal entities and cross-modal relations.
A function 7(v) = a € A, is defined to map each node v to an attribute in the
set A, according to its modality, As a result, the attribute set of nodes can be
formulated as A = {G, I,C,T}. Furthermore, the edges ¢ € £ in the heteroge-
neous embedding represent the relations from the source nodes vy € Vs to the

3 We find that another foundation VLM, BLIP-2 [37] showing effective on curating
captions for 3D representation [27,31,73] does not work well for pathological images.
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target nodes v; € V;*, therefore the attribute of an edge e : vy, — v; is deter-
mined is determined by the attribute of the source node vy and target node v,
as well as their actual semantic relations. Thus, a function ¢(e) = r € R that
maps each edge e € £ to a specific attribute r € R is introduced. We formulate
this attribute set of relations R by the prior knowledge of biomedical modalities,
R = {“express”, “depict”, “atomize”, “intra-modal”, }. This set represents semantic
relations of “express” between genomics and images, “depict” between images and
texts, and “atomize” between images and cell graphs. We also model all relations
between “intra-modal” instances. To obtain initial input graph embedding V), we
perform a non-linear projection on the modal features X. Edge embeddings are
computed as cosine correlations between head and tail nodes.

3.3 Modality-prompted Completion

The modality-prompted completion aims to adapt the deficient embedding of
missing modality by updating its with some prompted entities that could be
learnt. Formally, we introduce a graph prompt operation, which could be pa-
rameterized by gy, transforming a input graph representation G into g4(G).
Hopefully, it is learnt to transform the missing graph embedding back to its
original complete status.

General Prompting. Given the missing modality My € {G,I,C,T}, some
specific subjects have all the instances of that modality missed, such that the
representation of them at My is ruined, as Vi, = {@}. There are also some
patient subjects not affected by the missing, still with the complete data and
the representation Vs, maintained. We sample hallucination nodes v € V¥,
where VP € RNP*4_ a5 a basic prompt scheme for graph completion. We extract
the representation prior of the missing modality Mg by collecting the modality-
specific feature from all subjects, except for the subjects with the incomplete
data at the missing modality, Vjs, The subjects with the incomplete data at
the missing modality, i.e., Vp, = {@} Then we initialize the features of the
Np prompt entities by a Gaussian sampling from the extract modality prior,
motivated by the intuition that the same modality among different subjects
share a basically similar distribution. After initialized, the set of prompt nodes
VP could be optimized effectively along with the model training.
Entity-dependent Prompting. The introduced prompted entities are agnos-
tic to the context, bringing the risk of yielding sub-optimal results. To encode the
entity-dependent contextual information, we further introduce a prompt bank
that contains a set of prompt components, V2 € RV8*4 where Np is the num-
ber of prompt components. We take the these components as a series of base
prompt, the weights w of which could be obtained in an entity-independent fash-
ion. That is, we pass each input node v through a channel-downscaling linear
layer to obtain a compact feature vector, followed by a softmax operation, thus
yielding the weights w € Rz,

w = Softmax (deNB (’UP)) , (1)

4 For simplicity, index s and ¢ is omitted when cross-modal relations are not involved.
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where Wy« N, denotes the linear projection layer that transforms the feature
dimension from d to Np. Then we use these weights to modulate the prompt
components for each query entity v*, and sum the general prompts and the
entity-dependent prompts that perceives the graphic context,

vP<—vP+Zw¢'UiPB, (2)

where vip B denotes i-th component in the prompt bank. By doing so, the prompted
graph embedding could be described with the formulation of graph prompt func-
tion g4 (), by which the nodes V and edges & of a graph G to prompt would be
transformed as,

V= {V/MQ,VP}, &= {E/Mg,EdgeUpdate(V/Mg,VP)} (3)
Vo(e)eER

where V), denotes the node embedding at all the modalities except for Mgy
and &/, denotes the edge space when removing all the nodes at the modality
M. EdgeUpdate(-, ) defines the operation that updates the features of edge e
Vo(e)eER

between tx(vc)) sets of nodes if the relation can be retrieved in the attribute space
of edge p(e) € R. Effectively, the graph embedding of the missing modality My
are adapted through inserted with the prompt nodes as well as uncovered with
some ruined relations.

3.4 Knowledge-guided Hierarchical Aggregation

With the completed graph g¢4(G), the knowledge-guided hierarchical aggrega-
tion module effectively embeds the knowledge prior into a series of meta-paths,
thereby we can search for the global cross-modal heterogeneous neighboring.
With the found neighbouring, the local multi-relation aggregation module is
performed across various heterogeneous edges, and the overall hierarchical ag-
gregation [34,84] module can be parameterized by a network function M(-).

Global Meta-path Neighbouring. The aggregation of graph information
highly depends on the established neighboring rules [65,79], and we design novel
meta-paths as global information pathways, allowing for interaction of two het-
erogeneous entities. Given the entities V and meta-paths @ in the heterogeneous
graph, the neighbors derived from meta-paths for all the entities are uniquely
identified [79], as N{‘f . Hence, our insight is to embed the domain knowledge
into the formulation of @ by considering the semantic relations across the clin-
ical modalities. Recall that the edge attribute space R is explicitly defined by
the biological relations among modalities, we derive that, with the exception
of “intra-modal” relations, i.e., the entities at the same modality, all heteroge-
neous nodes can only interact with the nodes whose attributes are semanti-
cally related to themselves in a single-hop propagation [415, 79]. Following this
principle, we adopt a random walking strategy [12] to search for the optimal
meta-paths from all potential candidates. Specially, we randomly start from
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an entity of one modality, then iterate over all the heterogeneous nodes with
valid semantic relations in the attribute space, i.e., p(e.) € R. Repeating the

iterations, we show that an appropriate customization of meta-paths could be
“express” “atomize” “express” “depict” “atomize”
® = {G I c, G 1 T, C —/———

I “express” “depict” I “express”

G, T G}. Following [79], all meta-paths ¢ are
formulated with the maximum lengths within two hops. In practical usage, when
querying the neighbourhood N.? for an entity v, we first project it onto the en-
tity attribute space A by 7(v), and then iterate over all meta-paths in ¢ with a
given number of hops H. After that, all reached entities attributes are collected,
and the entities of those collected attributes are taken as the neighbours along
the meta-paths,

/\/f—{v’lT(v’)G{ | Regch(@)}}, (4)

i€[1,|P]
where Regch denotes the operation that collects all the reached attributes by

walking along a meta-path @; with H hops. || ie(1,| )] 18 the concatenation oper-
ator for all the resulted elements.

Local Multi-Relation Aggregation. With the derived entity-wise N neigh-
bours, we perform the information propagation for each target node v, € V; as
a local feature aggregation from all its neighbored source nodes V. To model
node-wise interaction [3, 18], we introduce a Multi-Head Attention (MHA) mech-
anism that models the target node features as Query and source node features
as Key and Value. We embed the target node v; and source node v, by different
linear projection layers Wj (0) and Wj (03)? with each attention head 7,

Kj _ /i -1 Q. _ /i (I-1)
o = Wi o0 P = W e (5)
U;/,j — Wj( ) ~v§l‘1),

where v{' ™) represents the input node feature for node v € V from the (I —1)-th
layer. The projection layers are capable of mapping node features from different
node attributes to an embedding space that is invariant across node attributes.

The features of edges from the (I—1)-th layer e,(f; 12)t are also projected by a linear

projection layer W), serving as a Key feature, evaavt =W - eﬁjit. Once
node embeddings are projected, we calculate the dot-product between the query
and key vectors. Besides, we multiply the linearly transformed edge embedding

with the similarity score to integrate the edge features into graph G,
sHA(e, j) = (vET -ell L, - 0f7) IV, (6)

where d denotes the dimension of node embeddings, SHA(e,j) represents the
attention score of edge e by the Single-Head Attention at j-head. We concatenate
the scores obtained from each head and apply a softmax to them,

SRA(e) = Softmax (
Vvse./\/{i

SHA(ﬁJ)) : (7)

I
JE[L,h]
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where SRA(e) represents Single-Relation Attention, providing the final attention
score of the edges aggregating all the heads j € [1,h]. Mf is the set of the
neighbours to the target node v;. Then, we perform target-specific aggregation
to update the feature of each target node by averaging its neighboring node
features. For each target node v;, we conduct a softmax operation on all the
attention vectors from its neighboring nodes and then aggregate the information
of all neighboring source nodes of v; together. The updated node features vgl)

for GV can be represented as,

W= P ( I ] <v¥ﬂ'-sm<e>>>, (8)

Vo, EN'® JE[1,h
vt

where @ is an aggregation operator, e.g., mean aggregation. The updated graph
GW is returned as the output of the I-th layer. Such operation is scalable by
using L layers of aggregation. We further introduce modality-specific pooling for
all nodes within the modality to obtain the prototype features for all modalities.
Then the graph-level feature can be determined by a mean readout layer [3,79].

3.5 Overall Optimization

The aggregated multimodal representation could be obtained by M o g4(G)
from the heterogeneous graph G(-), modality-wise graph prompting g4(-) and
knowledge-guided hierarchical aggregation M(-). While the diverse diagnostic
tasks including the glioma grading (a classification task) and the survival pre-
diction (a integration prediction task) that may differ in the formulation, it is
shown that they could be transformed to a uniform supervised learning fashion
after some manipulations of task head [5]. Formally, the task-specific task head
H7 for the task T is introduced, with the task label denoted by y7,

Jnin Eg £ (KT o Mo(9),y"). 9)

where £ denotes the loss function, which could be implemented by a NLL (neg-
ative log-likelihood) loss.

4 Experiments

4.1 Datasets and Settings

Datasets. We evaluate our method using data from The Cancer Genome Atlas
(TCGA) [1] , a public database that includes genomic and clinical data from
thousands of cancer patients. We select the datasets of Glioblastoma & Lower
Grade Glioma (GBMLGG) and Kidney Renal Clear Cell Carcinoma (KIRC). For
TCGA-GBMLGG, following [5], we use ROIs from diagnostic slides and apply
sparse stain normalization [5] to match all images to a standard H&E histology
image, creating a total of 1505 images for 769 patients, with WHO grading labels
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from G2 to G4. We curate 80 CNA and 240 RNA-Seq genomic features for each
patient. Note that there are 40% of the patients with inherently actual missing
RNA-Seq data. For the KIRC dataset, we use manually extracted 512 x 512
ROIs from diagnostic whole slide images for 417 patients in CCRCC, yielding
1251 images total that are similarly normalized with stain normalization. We
pair these images with 117 CNV and 240 RNA-Seq genomic features. There are
grading labels by Fuhrman Grading from G1 to G4.

Evaluation. For each cancer dataset, we perform 5-fold cross-validation and
report the average test performance. Different metrics are leveraged for specific
evaluation tasks, pathological glioma grading with Area Under the Curve (AUC)
and Accuracy (ACC), and survival outcome prediction with concordance index
(C-Index). Due to inherent missing of partly genetic modality in GBMLGG,
we deploy the framework directly without modifying the data.While for KIRC
with the complete modality data, we simulate the same situations in GBMLGG,
randomly dropping RNA-Seq data with 40% subjects over the whole dataset.
To ensure the consistent missing cases at training and test, we constrain the
proportion of incomplete subjects in the training and test splits to be equal
when producing the five-fold validation. In order to explore the missing issues
under more modalities and missing ratios, we also perform experiments under
simulated missing settings in Sec. 4.3.

Implementation. The framework is optimized by the Adam optimizer, with a
learning rate of 1 x 1072 and a weight decay of 1 x 1075 for the graph aggre-
gation M and task head H, over 150 epochs with early stopping. We adopt a
smaller learning rate of 2 x 10~* specially for optimizing prompt nodes Vp and
the prompt bank components V2 in graph prompt function 9o (). All the mul-
timodal instances of a patient subject are jointly fed to the networks to get the
final Data augmentations are performed on the training graphs, which involve
randomly dropping edges and nodes, and adding Gaussian noise to the node
and edge features [29,70]. The dropout ratio of each dropout layer is selected as
0.2. Regarding the hyper-parameters, we have the number of prompt nodes and
prompt bank components in Eq. 2 with Np = 5 and Ng = 5, and the dimension
of input graph representation as d = 512.

4.2 Comparison with State-of-the-arts

We compare the proposed method against several SOTA methods in Tab. 1.
For fair comparison, we apply identical settings for all experiments, and use the
official code of compared works to deploy on our tasks when necessary.

Unimodal Models. Existing methods to analyze genomic data and patholog-
ical images are introduced. For genomic data, we employ SNN [24] for survival
outcome prediction in the TCGA [5,6], and SNNTrans [24,63] that incorporates
SNN as the feature extractor and TransMIL [63] for a global aggregation. For
pathological images, we report the results of the SOTA MIL methods including
the transformer-based models: AttnMIL [20], TransMIL [63], and the graph-
based models PatchGCN [4], GTNMIL [85], HEAT [3]. It appears that using
multimodal data consistently improves the performance under various metrics.
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Table 1: Performance Comparison. We report results on four TCGA benchmarks,
using various modality combinations of Genomics, Images, Cell graphs and Texts.

Modality Glioma Grading (AUC/ACC) Survival Pred. (C-Idx)

Methods

GICT GBMLGG KIRC GBMLGG KIRC
SNN [24] X X X 0.8527 0.6583 0.8100 0.7790  0.7974 0.6639
SNNTrans [63] X X X 0.8678 0.6725 0.8084 0.7755  0.7970 0.6671
AttMIL [20] X v/ X X 0.9063 0.7533 0.8252 0.7803  0.7908 0.6850
TransMIL [63] X v X X 0.9149 0.7683 0.8295 0.7899  0.8017 0.6876
PatchGCN [4] X v/ X X 0.8802 0.7429 0.8288 0.7896  0.7806 0.6795
GTNMIL [85] X v X X 0.9225 0.7966 0.8323 0.7980  0.8162 0.6953
HEAT 3] X v/ X X 0.9289 0.8057 0.8300 0.7961 0.8223 0.7059
Pathomic [5] X X 09172 0.7618 0.8295 0.7899  0.8101 0.7152
Porpoise [8] X X 0.9199 0.7789 0.8278 0.7800  0.8179 0.7179
MCAT [6] X X 0.9288 0.7929 0.8352 0.7957  0.8274 0.7235
TransFusion [36] X X 0.9209 0.7815 0.8299 0.7910  0.8251 0.7230
GTP-40 (Ours) X X 0.9256 0.8036 0.8349 0.7985  0.8296 0.7273
Pathomic [5] X 0.9195 0.7674 0.8280 0.7889  0.8199 0.7211
TransFusion [36] X 0.9225 0.7952 0.8318 0.7973  0.8283 0.7260
GTP-40 (Ours) X 0.9336 0.8068 0.8331 0.8021  0.8329 0.7315
TransFusion [36] 0.9245 0.7986 0.8325 0.7990  0.8296 0.7289
GTP-40 (Ours) 0.9389 0.8126 0.8416 0.8068  0.8351 0.7336

Multimodal Models. We compare the SOTA multimodal methods including
Pathomic [5], Porpoise [8] and MCAT [6], which only focus on extracting com-
plementary multimodal information from the genomics and pathological images.
It appears that there is a gain in using multimodal complementary information
for various diagnostic tasks. Furthermore, as extending to more modalities is
still unexplored, we compare our GTP-40 with other baselines by extend exist-
ing work Pathomic [5] with the cell graph modality, and also compare with a
simple baseline TransFusion [36] which concentrates the intra-modal representa-
tions learned by uni-modal models [63]. From the table, the proposed GTP-4o
exhibits the obvious improvement under most of different biomedical modalities.

4.3 Further Results

Ablation Studies. The effect of removing each component of GTP-4o is pre-
sented in Tab. 2. No Heterogeneous Embedding removes all the heterogeneous
properties in the embedding such that it degrades to a simple homogeneous
graph. No Heterogeneous Relation removes the heterogeneous properties of edges
while maintaining the diverse attributes among the node features. No Comple-
tion (Zero-init Missing) handles the missing modality without using the pro-
posed graph prompt completion while sets the features of the missing modality
to zero values. No Completion (Drop Missing) directly drops the modality data
in all patients if it occurs missing for some patients. No Aggregation (Plain Mean)
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Table 2: Ablation of GTP-40 Variants. Results on TCGA-GBMLGG benchmarks
over tasks of Glioma Grading (GG.) and Survival Prediction (SP.) are reported.

Components Variants GG. (AUC) GG. (AUC) SP. (C-Idx)
) No Heterogeneous Embedding 0.9232 0.8030 0.8168
Graph Representation  Ngo Heterogeneous Relation 0.9259 0.8048 0.8201
No Completion (Zero-init Missing)  0.9087 0.7875 0.7946
Modality Completion No Completion (Drop Missing) 0.9288 0.8061 0.8233
No Prompt Bank 0.9275 0.8081 0.8280
) ) ~ No Aggregation (Plain Mean) 0.9329 0.8067 0.8311
Hierarchical Aggregation No Knowledge Guidance 0.9350 0.8071 0.8342
Full Model The Proposed GTP-40 0.9389 0.8126 0.8416

removes the knowledge-guided aggregation while performs the plain mean ag-
gregation among the k-NN heterogeneous neighbours (k = 15). No Knowledge
Guidance removes the knowledge guidance for aggregation while uses the ran-
dom meta-paths. Our ablation study results confirm the pivotal roles of our
designs in the overall performance and effectiveness of the model.

Impact of Modality Usage. Fig. 3(a) shows the impact of using various com-
binations of modalities by GTP-4o0. For the case of single modality, it is observed
that each modality has its advantage for a specific task, as the relative perfor-
mance of using only genes and only images is opposite for the tasks of glioma
grading and survival analysis. We can also see that when more modalities like
cell graphs and text descriptions are introduced, the performance of the model
is improved on both two tasks. This suggests that GTP-4o is not only capable
of generalizing to the various combinations of medical modality usage, but also
able to deliver superior performance in terms of AUC (for glioma grading) and
C-Index (for survival prediction).

Impact of Modality Missing and Completion. To validate graph prompt-
ing’s effectiveness, we compared graphs built from original full instances and
completed graphs with arbitrary missing instances for a non-missing case (TCGA-
02-0006) in Fig. 3(b). The completed graph shows similar relation patterns to the
real one, suggesting biological validity of our proposed completion method. We
further explored various missing settings by simulating missing data in image and
non-RNA genomics modalities on TCGA-GBMLGG benchmarks. Fig. 4 illus-
trates GTP-40’s performance compared to the baseline without graph-prompted
completion under different missing ratios. Results confirm the proposed comple-
tion method’s effectiveness across various modality missing scenarios.

Limitation and Future Works. The current deployment is limited by the
fact that no real-world clinical text reports are available for the datasets, thus
we have to generate synthetic text descriptions by LLMs, probably bringing some
data noise. Another limitation is that some additional modalities such as tabular
data, are not considered in this paper, which could serve as future works.
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Fig. 3: (a) Analysis of Modality Usage. We provide the results of GTP-40 by
using either Genes, Images, Cell graphs, Texts, or their combinations, on benchmarks of
survival prediction (C-Index) and glioma grading (AUC). (b) Analysis of Modality-
prompted Completion. We compare the relation pattern (similarity) in the original
graph and the graph that is first removed specific instances then completed.
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(a) Glioma grading w/ missing Image and Gene.  (b) Survival pred. w/ missing Images and Gene.

Fig. 4: Analysis of Modality Missing. We study the results of (a) glioma grading
and (b) survival prediction with the various missing ratios of Images and Genes. We
compare the full framework of Ours and the version without our completion (baseline).

5 Conclusion

Increasing biomedical multimodal data provides not only opportunities for ac-
curate and comprehensive diagnosis but also challenges for learning against the
modality heterogeneity as well as the missingness issues. This study presents
GTP-40, which signifies a pioneering exploration into learning unified repre-
sentations from various clinical modalities via the graph theory, exhibiting the
robustness to heterogeneous modalities. Unlike prior methods, GTP-40 explores
capturing explicit relations via a heterogeneous graph embedding. A novel graph
prompting is proposed to complete deficient graph representations of missing
modalities, and a hierarchical multimodal aggregation employs a global meta-
path prior to guide the local aggregation across various heterogeneous relations.
Extensive experiments demonstrate the efficacy of GTP-40 on disease diagnosis.
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