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A Implementation details

A.1 CL strategies

LwF [4] is a classic SCL method for feature distillation. It distills the logits of
the frozen network trained on previous tasks using cross-entropy loss. We pair it
with SL methods that train with cross-entropy loss. We use the implementation
from [5].
CaSSLe [2] is a method for self-supervised continual learning that utilizes a
learnable MLP to project past features onto the new latent space for improved
feature distillation. The distillation is performed on the outputs from the SSL
projector with the loss function of a particular SSL method. Because of reliance
on SSL-specific components, namely the projector and loss function, we do
not pair CaSSLe with supervised approaches, except for SupCon which loss
and architecture closely resemble SSL. We follow an official implementation of
CaSSLe.
PFR [3] realizes a similar idea to CaSSLe. It also uses a learnable MLP projector
to enhance feature distillation. However, it uses cosine similarity as a loss function
and performs distillation on the outputs of the backbone network. Therefore,
we pair it with both SL and SSL approaches as it does not rely on SSL-specific
components. We present the chosen values of regularization hyperparameter λ in
Table 1. We selected the best λ ∈ {1, 3, 10, 15, 25} separately for each method
and dataset.

A.2 k-NN evaluation

Each model is evaluated with a k-nearest neighbour classifier after training each
task (offline evaluation). Moreover, we perform some experiments where we use
k-nn evaluation after each epoch (online evaluation for Figure 4).

For online evaluation, we perform extensive hyperparameter search and report
results obtained by the best probe. We explore the following hyperparameters:
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Table 1: PFR regularization hyperparameter λ for different methods and datasets.

Method C10/5 C100/5 C100/20 IN100/5

SL 1.0 10.0 10.0 15.0
SL+MLP 3.0 3.0 10.0 1.0
t-ReX 3.0 3.0 10.0 1.0
SupCon 3.0 10.0 25.0 10.0
BarlowTwins 25.0 25.0 25.0 25.0
SimCLR 3.0 3.0 15.0 3.0

– k ∈ {5, 10, 20, 50, 100, 200} - number of considered neighbours;
– distance function - we consider either euclidean distance or cosine similarity;
– temperature T ∈ {0.02, 0.05, 0.07, 0.1, 0.2, 0.5} used only with cosine distance;

resulting in 42 k-NN probes per one offline evaluation.
For online evaluation, we use a fixed hyperparameter set: k = 20, cosine

distance, and T = 0.07. This k-NN configuration often turns out to be one of the
best in offline evaluation.

A.3 Architectures of the projector

In Figure 1 we present the architectures of the projectors proposed by SimCLR [1],
t-ReX [6] and by [7]. The results of different methods paired with these projectors
are presented in Table 6 in the main paper.

Figure 1: Architectures of the projectors used by different methods.

B Extended analysis

B.1 Initialization of MLP projector

Is it better to randomly reinitialize the projector after each task or is it better to
start from the weights of the projector learned on the previous tasks? The results
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reported in Table 2 suggest that for SL it is better to randomly reinitialize the
MLP projector. SSL methods, however, tend to perform slightly better when
the projector for a new task is initialized with the previously learned projector.
We suspect that in SL the projector encompasses task-specific knowledge which
interferes with learning new tasks. On the other hand, in SSL the MLP is
responsible for projecting the representations into the space where an invariance
to augmentations is enforced which is less task-specific than classification.

Table 2: SL benefits from resetting the MLP projector and SSL methods tend to
perform slightly better when starting from the weights of the projector learned on
previous tasks. We report k-NN accuracy (%) after the final task. Better initialization
method in bold.

Method MLP init CIFAR10/5 CIFAR100/5

SL+MLP Reset 65.9±0.7 61.9±0.5
Previous 65.0±1.5 60.1±0.2

BarlowTwins Reset 76.1±0.5 54.9±0.3
Previous 76.2±1.2 54.1±0.3

SimCLR Reset 72.0±1.6 47.4±0.2
Previous 72.4±1.3 48.9±0.4

B.2 Stability of representations

We define representations as stable when they do not drift in the representation
space when the network is trained on a new task. The stability of representations
is a desired property of SCL models as stable representations facilitate continual
training of a classifier [8]. On the other hand, UCL evaluation only measures the
representations’ strength and the relationship of stability and strength of represen-
tations is not obvious. One can imagine both stable and unstable representations
can improve strength during continual training.

In this section, we evaluate the stability of representations of SL and SSL
models. We use nearest mean classifier (NMC) accuracy to measure it in the
context of SCL. After the first task, we calculate prototypes of each class as
a mean feature of all the samples of this class. We evaluate the model and
save the prototypes. Then, we train on the second task and evaluate the model
using saved prototypes. We use the accuracy obtained by classification using
old prototypes as a proxy of the stability of the representations. In the case
of perfectly stable representations, both evaluations would result in the same
accuracy while perfectly unstable representations would cause accuracy to drop to
a random guess level. Moreover, we evaluate the updated model using prototypes
recalculated on previous data (not allowed in continual learning) to provide an
upper bound.
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Figure 2: Task aware NMC accuracy on CIFAR10 dataset for supervised and self-
supervised models trained on different sequences of tasks. After training on CIFAR10
(T1), both SL and SSL models achieve high NMC performance (yellow). After training
the second task (T2), the nearest mean classification using old prototypes results in
performance degradation (green). We calculate an upper-bound accuracy after training
on the second task by recalculating the prototypes using old data and a new backbone
(purple). Note that it is not possible in the CL scenario as old data is inaccessible. Gray
dotted line marks random guess performance.

The results are presented in Figure 2. Representations of all the methods
are not stable in high distribution shift scenario C10−→SVHN. They achieve
random guess accuracy when utilizing saved (old) prototypes. However, in a
low distribution shift scenario, C10−→C100, SL achieves 55.3% accuracy using
old prototypes (11.3% below upper bound performance) while SSL achieves
48.0% (14.5% below upper-bound) and SL+MLP achieves only 36.7% (38.3%
below upper-bound). Note that performance degradation can be only partially
attributed to forgetting of representations as the upper-bound performance is
still high after training on the second task for most of the methods. These results
suggest that there exists a trade-off between the stability of representations and
the expressiveness of representations trained continually as methods that build
stronger representations tend to have lower stability.

B.3 Impact of training length

We investigate how the number of epochs influences the representations trained
with different methods. We conducted experiments on a long sequence of tasks,
C100/20, training with SSL, SL, and SL+MLP methods for different numbers
of epochs in each task. We present the results in Table 3. We observe that a
large number of epochs (500) is important for SSL to achieve good final results.
However, the performance gap between the SSL model trained on 500 epochs
and the SSL models trained for 100 or 200 epochs is decreasing with a number
of tasks.
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Figure 3: Self-supervised models benefit from longer training. However, supervised
models, both with and without MLP projector result in reduced performance when
trained for a large number of epochs. We report task-agnostic k-NN accuracy for all
tasks after each task.

B.4 Task exclusion comparison

In Figure 4 we take a closer look at the task exclusion comparison. We identify
that the training recipe is a factor responsible for its negative task exclusion
difference. The training recipe for SL and SSL differs: SL is trained for 100 epochs
with a 0.025 learning rate while SSL is trained for 500 epochs with 0.3 learning
rate. When training SSL for 100 epochs with a learning rate of 0.025, following
the SL+MLP learning recipe, we observe that SSL exhibits positive behavior
that is similar to SL+MLP. However, such training configuration leads to the
suboptimal final performance of a continual learner, as shown in Figure 3.

B.5 Detailed two-task results

In Figure 5 we present detailed results of two-task settings results summed up in
Figure 1 in the main paper: C10−→C100, C100−→C10, C10−→SVHN, SVHN−→C10,
C100−→SVHN and SVHN−→C100. We can observe that self-supervised learning
usually outperforms supervised learning on the first task. The opposite is true
for the second task – SL performs better than SSL. However, SL equipped with
MLP achieves the highest average accuracy on both tasks usually outperforming
both SL and SSL on the first and second tasks.
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Figure 4: SSL behaves similarly to SL+MLP when trained for the same number of
epochs with the same learning rate.
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Figure 5: Results of two-task settings after training on the second task. Accuracy
on the first task is presented on the horizontal axis and accuracy on the second task
is presented on the vertical axis while the background color indicates the average
accuracy on both tasks. SL usually outperforms SSL on the second task and usually
underperforms on the first task. SL+MLP takes the best of both worlds (high first-task
accuracy from SSL and high second-task accuracy from SL) and achieves the best
overall performance.
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