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Abstract. Existing end-to-end trackers for vision-based 3D perception
suffer from performance degradation due to the conflict between detec-
tion and tracking tasks. In this work, we get to the bottom of this con-
flict, which was vaguely attributed to incompatible task-specific object
features previously. We find the conflict between the two tasks lies in
their partially conflicted classification gradients, which stems from their
subtle difference in positive sample assignments. Based on this obser-
vation, we propose to coordinate those conflicted gradients from object
queries with contradicted polarity in the two tasks. We also dynamically
split all object queries into four groups based on their polarity in the
two tasks. Attention between query sets with conflicted positive sam-
ple assignments is masked. The tracking classification loss is modified
to suppress inaccurate predictions. To this end, we propose OneTrack,
the first one-stage joint detection and tracking model that bridges the
gap between detection and tracking under a unified object feature rep-
resentation. On the nuScenes camera-based object tracking benchmark,
OneTrack outperforms previous works by 6.9% AMOTA on the valida-
tion set and by 3.1% AMOTA on the test set.

Keywords: 3D Tracking · Camera-based Detection and Tracking · End-
to-end Tracking · Gradient Coordination

1 Introduction

Reasoning about the location and trajectory of surrounding objects is a funda-
mental task for autonomous driving and robotic navigation systems. Due to the
robustness and low cost of cameras, vision-based 3D detection and tracking have
received widespread attention from the research community [14,22,23,26,36,37].
Recently, several approaches [21, 31, 48] have been proposed to improve 3D
multi-object tracking (MOT) by jointly optimizing the detection and tracking
pipeline. Based on transformer architecture, those end-to-end 3D trackers use
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Table 1: Comparison with previous works trying to solve the conflict be-
tween detection and tracking. *: DQTrack relies on frozen pre-trained detectors
when compared with state-of-the-art trackers.

Method setting e2e one-stage detection
supervision

train from
scratch

MOTRv2 [50] 2D × × × ×
MOTRv3 [45] 2D ✓ ✓ × ✓
DQTrack [21] 3D ✓ × ✓ ✓*
OneTrack 3D ✓ ✓ ✓ ✓

track queries to track objects, being free from the dependence on offline detec-
tors and post-processing operations.

However, most end-to-end 3D trackers suffer from the optimization conflict
between detection and tracking, a problem also widely recognized in 2D MOT
studies [45, 50]. This conflict results in the inferior precision and recall of end-
to-end trackers compared to their baseline detectors. Previous works roughly
attribute the conflict between two tasks to differences in required features for
detection and tracking and attempted to alleviate this problem. Some of them
train their model as detectors before the tracking training process [31, 33] or
take an off-the-shelf detector as guidance [50]. Some separate the detection and
association stages as well as their object feature representation to avoid conflict,
such as DQTrack [21]. Although much progress has been made, training a one-
stage end-to-end tracker from scratch remains challenging. It is also challenging
to train trackers jointly under both detection and tracking supervision. We sum-
marize recent works in Table 1. In this work, we aim to accomplish the true
joint training of detection and tracking from scratch with a one-stage model and
unified feature representation for both tasks.

We conduct a pilot study to investigate how and where the two tasks conflict
during model optimization. As illustrated in Table 2, only jointly supervising
the detector with an extra classification loss computed under the ground truth
assignments for tracking will lead to severe performance degradation of detectors.
Therefore, we conclude that the conflict between the two tasks originates from
their conflicting classification gradients.

In this paper, we precisely identify and coordinate the conflicted classification
gradient between the two tasks, which originates from their partially conflicted
positive sample definition. We propose OneTrack, the first model capable of
achieving the true joint training of detection and tracking in a unified, one-stage
model. OneTrack follows the “tracking by track queries” paradigm. During the
training process, we assign ground truth annotations to object queries twice
based on positive sample definitions for detection or tracking. We dynamically
categorize all object queries into four groups based on their polarity in two tasks.
We have two lightweight classification heads in OneTrack which are respectively
responsible for classifying detection or tracking positive samples. Queries that are
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Table 2: Pilot study on supervising 3D detector under additional ground
truth assignments for tracking. The stronger color means more degradation in
performance. Experiments indicate the conflict between detection and tracking tasks
lies in their classification supervision.

Detection
Classification

Detection
Regression

Tracking
Classification

Tracking
Regression AMOTA↑ IDS↓ NDS↑ mAP↑

✓ ✓ × × - - 0.570 0.479
× × ✓ ✓ 0.305 121 - -

✓ ✓ ✓ × 0.404 363 0.512 0.432
✓ ✓ × ✓ 0.417 8512 0.566 0.473
✓ ✓ ✓ ✓ 0.405 255 0.528 0.428

positive samples only for one task will only backpropagate classification gradi-
ents in the respective head to reduce conflicted gradients. We dynamically mask
all attention between conflicted positive queries in each decoder layer to pre-
vent unexpected query competition. We also adjust the tracking loss to suppress
inaccurate predictions.

To summarize, our contributions are as follows:

– We reveal that the conflict between detection and tracking tasks lies in their
diverged definition of positive samples and their partially conflicted classifi-
cation gradients.

– We propose OneTrack, the first model capable of completely addressing the
conflict between detection and tracking under a unified object feature rep-
resentation. OneTrack can be trained as both a detector and a tracker from
scratch in a single training stage and can perform tracking and detection in a
one-stage fashion. The detection performance of OneTrack is comparable to
detectors, while its tracking performance surpasses all previous 3D trackers.

– Our method establishes a new state-of-the-art on nuScenes MOT benchmark,
surpassing previous methods by over 3.1% AMOTA.

2 Related Works

2.1 Query Propagation in MOT

Early works in 2D or 3D MOT most follow the “tracking by detection” paradigm
[4] and associate detection results across frames through post-processing [1, 2,
8, 9, 12, 13, 16, 19, 25, 35, 40–42, 44, 46, 49]. Based on DETR [6] which introduced
object queries to detect objects, MOTR [47] and Trackformer [30] extended the
concept of object query to track query by propagating object queries across
frames. By tracking objects through track queries, MOTR and Trackformer can
perform end-to-end joint 2D detection and tracking without post-processing.
However, they seriously suffer from the conflict between detection and tracking.
MOTRv2 [50] and MOTRv3 [45] concentrate on this conflict. MOTRv2 proposes
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using an off-the-shelf detector to guide the tracker, which is effective but damages
the end-to-end fashion of the tracker. MOTRv3 proposes to balance the label
assignment between detection queries and track queries to achieve a better trade-
off between the detection and tracking performance of the model. MUTR3D [48]
and PF-Track [31] applied the “tracking by track queries” paradigm to 3D MOT.
MUTR3D [48] performs camera-based tracking in an end-to-end fashion by in-
troducing 3D track queries to model spatial and appearance coherent tracks.
PF-Track [31] further refine the tracks and predict the trajectories of objects
with cross-object and cross-frame attention between object queries. Recently,
DQTrack [21] proposes to separate the detection process and association process
of trackers to avoid their conflicts in object feature representation. None of the
previous joint detection and tracking approaches can truly bridge the gap be-
tween detection and tracking with a one-stage model and a unified object feature
representation. Neither can they train the model from scratch and get rid of the
reliance on pre-trained detectors while detecting and tracking objects with high
precision and recall performance.

2.2 Camera-based 3D MOT

Camera-based 3D MOT has gained remarkable progress recently thanks to the
developments in camera-based 3D detection and depth estimation [11, 14, 15,
22, 23, 26, 27, 36–38, 43, 51]. Early methods in camera-based 3D MOT perform
tracking in 2D first and then lift the tracks to 3D space [34]. CC-3DT [10]
fuses multi-view object features to enhance associating objects across different
views. QD-3DT [13] perform 2D association first and enhance the instance as-
sociation with the depth order and motions of 3D objects. TripletTrack [29]
extracts local object feature embeddings and motion descriptors with CNN or
LSTM to measure the affinity between objects. MUTR3D [48], PF-Track [31],
and DQTrack [21] recently established new state-of-the-art tracking performance
by applying the transformer-based tracking architecture in 3D.

3 Method

The model design of OneTrack is conceptually concise. We add an additional
lightweight classification branch to a basic transformer-based tracker. Both ground
truth assignments for the detection and tracking tasks are employed to supervise
the model. We begin by reviewing the design of transformer-based trackers in
Sec. 3.1. Then in Sec. 3.2, we propose to identify the conflicted positive sample
assignments between detection and tracking through query grouping and pre-
vent the contradicted gradient from back-propagating. In Sec. 3.3, we introduce
the dynamic attention mask to further prevent gradient conflict between the
two tasks. Additionally, the tracking classification loss is modified to suppress
inaccurate boxes predicted by track queries, as described in Sec. 3.4.
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3.1 Reviewing the “Tracking by Track Queries” Paradigm

As previous transformer-based trackers [21,30,31,45,47,48,50], OneTrack detect
and track 3D objects with object queries. At each timestamp t, given multi-
view images I, the 3D detection task aim to predict a set of 3D bounding boxes
B = {b1,b2, · · · ,bn} and their confidence scores S = {s1, s2, · · · , sn} to capture
3D objects. Meanwhile, 3D MOT requires a consistent ID for each object across
frames. We represent the outputs for the 3D MOT task by {B,S, ID}, including
the predicted boxes, confidence scores, and ID of predictions.

In each frame, OneTrack first receives a set of object queries Q = {q1,q2, · · · }.
Following previous works [21, 31, 47, 48], Q consists of track queries propagated
from the previous frame and a fixed number of new detection queries Qd. The
query propagation process can be formulated as follows:

Qt = Q̂t−1 ∪Qd, (1)

where Q̂t−1 represents the propagated queries from the last frame. We denote
Qt as Q in the subsequent descriptions for simplicity.

In each frame, given the multi-view image features F extracted with image
encoder, OneTrack utilizes a transformer decoder to extract object features. The
decoder comprises six transformer decoder layers. In the ith layer Q is updated
as follows:

Q = DecoderLayeri(F,Q,M). (2)

Here, M represents the attention mask for the self-attention process in decoder
layers. In end-to-end trackers, attention between all object queries is usually not
masked. Then the object queries are fed into the classification and regression
heads to generate prediction boxes. Ground truths are then assigned to the
predictions for the calculation of classification loss and regression loss. Recent
works [21,31] usually preserve historical track queries from a few past frames as
tracking memory. These stored queries serve as references to the tracking process
in the current frame.

Instead of associating boxes across frames with post-processing techniques,
the “tracking by track queries” paradigm tracks objects with track queries prop-
agated across frames. Therefore during the training of trackers, a ground truth
instance is assigned to a specific track query in future frames once they are asso-
ciated in the current frame, regardless of the accuracy of the assigned query’s pre-
dictions in future frames. We denote these ground truth-query pairs as “locked”
[45] pairs, and the remaining ground truths and queries are denoted as “free”
ground truths or queries. In contrast, for detectors, positive samples are simply
defined as the most precise prediction in each frame. Hence, a positive sample for
detection may be classified as a negative sample in tracking and be suppressed,
and vice versa, as illustrated in Fig.1. This originates from ground truth objects
being assigned to different object queries in the two tasks. This conflict will lead
to conflicted classification gradients between the two tasks, hindering the con-
vergence of the model. We found that those conflicted gradients are primarily
responsible for the precision and recall degradation of end-to-end trackers.
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(a) Positive sample assign for detector
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Fig. 1: Difference in positive sample definition for query-based detector and
tracker. With object query propagated from the last frame, the end-to-end tracker
ensures that queries assigned as positive samples in the previous frame (like Q′

C) main-
tain their pairing with the same ground truth in the current frame. Meanwhile, the
detector always takes the most precise predictions (like QX) as positive samples. In
such case, the polarity of Q′

C and QX as training samples in the two tasks is opposite.

3.2 Solving the Conflict Between Detection and Tracking via
Gradient Coordination

We first try a trivial and straightforward solution to avoid the classification
gradient conflict between the two tasks. We attach two classification heads to the
model, one for detection classification and the other for tracking classification.
Since there is no obvious conflict in box regression for the detection or tracking
tasks, we use a shared head for regressing 3D boxes in the two tasks. Then all
predicted boxes are assigned to ground truths twice following the positive sample
definition in detection or tracking as follows:

σ̂det = argmin
σ

N∑
k

Lmatch(g
k,bσ(k)), (3)

σ̂free
trk = argmin

σ

M∑
k

Lmatch(g
k,bσ(k)), (4)

σ̂trk = σ̂free
trk ∪ σlocked

trk , (5)

Where {gk}Nk=1 is N ground truths(GTs), in which M of them are free GTs for
tracking. {bi}ni=1 is the set of predicted boxes. σ is the possible permutation of
N elements, following the notation in [6]. For example, (gk,bσ(k)) means the
kth ground truth box is assigned to the σ(k)th predicted box. Lmatch denotes
the matching cost between a ground truth and a prediction from an object
query. σ̂det and σ̂trk are the ground truth assignments for detection and tracking,
respectively. σlocked

trk stands for the locked ground truth and query pairs inherited
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from the last frame. Classification losses and regression losses are then computed
for gradient back-propagation in each decoder layer.

However, we found that merely separating the classification heads for two
tasks and supervising the model under both detection and tracking ground truth
assignments can neither obtain a satisfying detector nor tracker, as shown in Ta-
ble 4. Clearly, simply separating the classification heads cannot solve the conflict
between the sample classification in detection and tracking. This is because as
previously mentioned, a part of positive samples for training detectors will be
assigned as negative samples for training trackers, and vice versa. Therefore even
when the classification heads of two tasks are separated, classification gradients
on those samples will still be conflicted when back-propagated to the decoder
layers. To address this, we propose to decompose the classification gradients in
both tasks to identify and avoid their partial conflict on those conflicted samples.
We refer to this design as classification gradient coordination between the
two tasks.

We dynamically categorize object queries into four query groups in each
decode layer based on their polarity in both tasks: positive for both tasks; positive
for detection and negative for tracking; negative for detection and positive for
tracking; and negative for both tasks. We denote those four groups of queries as
Qpp, Qpn, Qnp, and Qnn. This proposed query grouping can be illustrated as
follows:

Qpp = {qk|k ∈ σ̂det, k ∈ σ̂trk}, (6)

Qpn = {qk|k ∈ σ̂det, k /∈ σ̂trk}, (7)

Qnp = {qk|k /∈ σ̂det, k ∈ σ̂trk}, (8)

Qnn = {qk|k /∈ σ̂det, k /∈ σ̂trk}. (9)

Through this, the classification gradients of the two tasks can also be decom-
posed as the sum of detection or tracking classification gradients on each group
of queries. The classification gradient conflict only lies in the second and third
groups of queries, as illustrated in Fig. 2(a). Therefore we propose to remove the
gradient of Qpn contributed to the tracking classification loss and the gradient
of Qnp contributed to the detection classification loss, as illustrated in Fig. 2(b).
Through this, the partial classification gradient conflict of the two tasks on Qpn

and Qnp is avoided. Qpp and Qnn still contribute gradient in both heads since
the partial classification gradients upon them are not contradictory.

3.3 Dynamic Attention Mask

Following previous end-to-end trackers [21, 30, 31, 45, 47, 48, 50], OneTrack gen-
erates predictions in a set-prediction fashion. Hence the model is encouraged to
suppress redundant predictions regarding the same ground truth object through
self-attention between object queries in each decoder layer. As previously men-
tioned, Qpn and Qnp originates from the same ground truth object being assigned
to different object queries in the two tasks. To avoid unexpected competition
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Fig. 2: Backpropagation of Classification Gradients. Gradient coordination pre-
vents the classification gradient conflict between detection and tracking. Best viewed
in color.

between task-specific queries regarding the same object, in each layer of the
decoder, we dynamically mask the attention between Qpn and Qnp. Attention
between all other query groups is not masked. Through this, Qpn and Qnp are
not directly exposed to each other during the forward process.

We utilize the ground truth assignment results in each decoder layer to gen-
erate the self-attention mask for the next layer. Before the first decoder layer
where detection queries are initialized as empty queries, we use distances between
their initial reference points and centers of ground truths to perform bipartite
matching. After each decoder layer, we perform bipartite matching based on
matching costs between ground truths and predicted 3D boxes defined in [37].
We employ the Hungarian algorithm [17] for bipartite matching. As for outputs,
the detection results of OneTrack include predictions from Qpp, Qpn and Qnn.
The tracking results includes predictions from Qpp, Qpn and Qnn. We illustrate
the pipeline of OneTrack in Fig. 3.

During inference, we categorize object queries into four groups based on the
detection and tracking confidence scores of their predictions. Queries with high
detection or tracking confidence scores over Tp are classified as positive samples
for the respective tasks. We set Tp = 0.2 in our experiments.

At last, in both the training or inference process, we propagate the Top-
K object queries with high confidence scores from both detection and tracking
results to the next frame as Q̂t. In particular, we will still propagate the “locked”
track queries to the future frames even if they are not in the Top-K object
queries. This is for addressing challenging tracking scenarios, such as an object
being occluded for several frames. We propagate “locked” track queries through
this for up to Aage =3 frames into future frames.

Following [31,36], we also preserve the propagated object queries as the mem-
ory queue for the detection or tracking process for up to 4 frames. The mem-
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Fig. 3: Training pipeline of OneTrack. For each decoder layer in OneTrack, We
identify object queries into four groups based on their positivity as training samples in
detection and tracking tasks. Task-specific queries that are positive samples only for
one task will only backpropagate gradients in the respective task-specific classification
head to prevent conflicted classification gradients. We dynamically mask all attention
across positive sample queries only for detection or tracking. Best viewed in color.

ory queues for the detection and tracking processes are updated independently.
Those memory queries are provided to the decoder for performing hybrid atten-
tion proposed by [36]. As keys and values for the hybrid attention layer, detection
and tracking memory queries are masked for Qnp and Qpn, respectively. We show
the design of decoder layers in OneTrack in Fig. 4.

As demonstrated in Table 4, with the proposed dynamic hybrid-attention
mask, the true joint training of detection and tracking can be achieved. This
allows for training detection and tracking in a single training stage and inferring
them in a single forward pass with a unified model. This feature of OneTrack
significantly reduces its training cost and inference latency.

3.4 Modified Tracking Classification Loss

In addition to introducing the true joint training of detection and tracking to
reduce the detection capability degradation of trackers, we also adjusted the
tracking classification loss to suppress the in fact inaccurate predictions. As pre-
viously mentioned, previous end-to-end trackers regard track queries whose pre-
dictions are associated with ground truths as positive samples equally, regardless
of the precision of their current predictions. This encourages the tracker to assign
high confidence to the in fact inaccurate predictions from track queries. There-
fore we propose to restrain the positive assignment of those in fact inaccurate
predictions.

In previous end-to-end trackers, the assignment result of a ground truth
object g can be denoted as a one-hot vector: An×1

g = [0, · · · , 1, · · · , 0], where
n is the number of object queries and the ground truth object is exclusively
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Fig. 4: Design of decoder layers in OneTrack. In addition to current object
queries, queries in detection memory and tracking memory are fed to the hybrid at-
tention layer as keys and values. As keys and values, Qpn and detection memory are
masked to Qnp. As keys and values, Qnp and tracking memory are masked to Qpn.

assigned to the ith object query. This assignment is unaffected by the matching
cost between the ith object query and g if they have been associated in recent
frames.

In OneTrack, we propose to suppress the assignment weight between ground
truths and queries that are locked but have high matching costs. We adjust the
assignment result of locked ground truth g as follows:

An×1
g = [0, · · · ,Wgi, · · · , 0], (10)

Wgi = − 1

γ
∗ Max((dist(g, qi)− 0.5), 0) + 1, (11)

where dist(g, qi) represents the distance between the centers of ground truth
box g and the predicted box of the locked query qi. γ is a hyper-parameter
greater than zero. The assigned weight Wgi between g and qi decreases linearly
from 1.0 as dist(g, qi) increases from 0.5m. The assignment weight serves as the
weighting factor for calculating box regression loss and the targets for predicting
tracking confidence score. Instead of Focal Loss [24], we employ the Quality
Focal Loss proposed by [20] to supervise the tracking classification head, given
the continuous 0∼1 confidence label.

4 Experiments

In this section, we first introduce our detailed experimental setup. Then we
provide comparisons with recent works on nuScenes camera-based 3D tracking
benchmark. Ablation studies on each component are presented in the last part.
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Table 3: Compare with recent works on nuScenes dataset. †: trained from
scratch. OneTrack-F / OneTrack-S : OneTrack trained under full-resulotion / half-
resolution as described in Sec. 4.2.

Backbone e2e Resolution AMOTA↑ AMOTP↓ MOTA↑ RECALL↑ IDS↓

Validation Split

QD3DT [13] R101 ✓ 1600×900 0.242 1.518 0.218 39.9% 5646
MUTR3D [48] R101 ✓ 1600×900 0.294 1.498 0.267 42.7% 3822
CC-3DT [10] R101 × 1600×640 0.429 1.257 0.385 53.4% 2219
PF-Track-S [31] V2-99 ✓ 800×320 0.408 1.343 0.376 50.7% 166
PF-Track-F [31] V2-99 ✓ 1600×640 0.479 1.227 0.435 59.0% 181
DQTrack [21] V2-99 ✓ 800×320 0.446 1.251 - - 1193

OneTrack-S† V2-99 ✓ 800×320 0.492 1.122 0.409 58.8% 315
OneTrack-F† V2-99 ✓ 1600×640 0.548 1.088 0.479 61.8% 389

Test Split

QD3DT [13] R101 ✓ 1600×640 0.217 1.550 0.198 37.5% 6856
MUTR3D [48] R101 ✓ 1600×640 0.270 1.494 0.235 41.1% 6018
SRCN3D [32] V2-99 × 1600×640 0.398 1.317 0.359 53.8% 3334
CC-3DT [10] R101 × 1600×640 0.410 1.274 0.357 53.8% 3334
PF-Track [31] V2-99 ✓ 1600×640 0.434 1.252 0.378 53.8% 249
DQTrack [21] V2-99 ✓ 1600×640 0.523 1.096 0.444 62.2% 1204

OneTrack-F† V2-99 ✓ 1600×640 0.554 1.021 0.461 60.8% 481

4.1 Datasets and Metrics

We evaluate our proposed method on the nuScenes dataset. nuScenes [5] dataset
is a large-scale autonomous driving benchmark containing 1000 multi-modal
videos. Videos recorded by six cameras are divided into 700, 150, and 100 scenes
for training, validation, and testing, respectively. 3D box annotations of 10 ob-
ject classes are provided for keyframes at 2Hz. For nuScenes 3D tracking bench-
mark, we report AMOTA, AMOTP [39], MOTA [3], Recall and identity switches
(IDS). For the 3D detection task, we report mean Average Precision (mAP) and
nuScenes Detection Score (NDS).

4.2 Implementation Details

Our implementation is mainly based on StreamPETR [36]. We define two im-
plementation settings: The full-resolution setting for state-of-the-art comparison
and the half-resolution setting for ablation studies. We conduct experiments us-
ing V2-99 [18] as the image backbone. OneTrack is trained using AdamW [28]
optimizer with a batch size of 8 and a base learning rate of 4e-4. The cosine
annealing policy is employed to adjust the learning rate. We use 644 initialized
detection queries in each frame and propagate the Top-256 object queries into
the next frame. When training, we record all matched ground truth and object
query pairs as “locked” pairs for label assignment. An object query matched with
a ground truth will be recorded as a track query. As previously mentioned, a
“locked” pair will be preserved in memory for up to Aage = 3 frames, even if
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Table 4: Ablation study on components breakdown.

Training
task

Initialized from
pre-trained detector

Gradient
coordination

Dynamic
mask

High-cost assign
suppress AMOTA↑ IDS↓ NDS↑ mAP↑

detection - - - - - - 0.570 0.479
tracking × - - × 0.305 121 0.455 0.313
tracking ✓ - - × 0.375 466 0.503 0.409

joint × × × × 0.425 246 0.517 0.410
joint × ✓ × × 0.441 231 0.555 0.462
joint × ✓ ✓ × 0.469 261 0.575 0.484
joint × ✓ ✓ ✓ 0.492 315 0.566 0.478

the respective track query is not in the Top-K object queries in each frame.
For track queries that failed to predict confident prediction over Aage frames,
its “locked” ground truth will be assigned to other “free” object queries. During
inference, we initialize an object query as a track query if it predicts a 3D box
with confidence over Tconf = 0.4. Additionally, all track queries are preserved and
propagated across frames for up to Aage = 3 frames. Predictions from the same
track query propagated across frames will be assigned the same tracking ID. We
output all detection predictions with confidence scores over 0.05 and all tracking
predictions with confidence scores over 0.3. We introduce other setting-specific
training configurations as follows.

OneTrack-F: We crop input images from the initial resolution of 1600×900
to 1600×640. We then conduct end-to-end training for 48 epochs. OneTrack-S:
We first crop the input images to the resolution of 1600×640 and downsample
them to 800×320. Models are trained for 24 epochs.

4.3 Comparisons with State-of-the-arts

As shown in Table 3, OneTrack outperforms all previous trackers in both the
validation and test set of nuScenes dataset by a significant margin. On the vali-
dation set, OneTrack surpasses previous state-of-the-art PF-Track [31] by 10.2%
AMOTA, On the test set, OneTrack surpasses DQTrack [21] by 3.3% AMOTA.
Notably, OneTrack reports fewer than half of the identity switches compared to
those reported by DQTrack. It is also worth mentioning that OneTrack is the
only model in Table 3 that is trained from scratch.

4.4 Ablations

We conduct ablation studies on each proposed component with OneTrack-S on
the nuScenes validation set.

Components breakdown. The breakdown analysis of proposed compo-
nents is presented in Table 4. Here “det” or “trk” in the first row stands for only
training the model for detection or tracking tasks. And “joint” stands for jointly
training the model for both detection and tracking tasks, with an extra classifi-
cation head attached to the model. As shown in Table 4, the model trained solely
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Fig. 5: Ablation on hyper-parameters. (a) On parameter γ in the modified track-
ing losses. (b) On the max preserved frames of track queries Aage. (c) On the score
threshold Tconf for track query initialization.

for the tracking task suffers from severe degradation in detection performance,
which results in their inferior detection performance compared to the detector.
Initializing the tracker from a detector checkpoint or trivially supervising the
model with both detection and tracking losses can only slightly alleviate this
problem. Our proposed components including classification gradient coordina-
tion, dynamic attention mask, and high-cost tracking assignment suppress, are
all validated as highly effective in achieving the true joint training of detection
and tracking tasks. It is noteworthy that OneTrack without modifying its track-
ing loss achieves an even slightly better detection performance than the model
trained solely as a detector. This observation suggests the potential for further
enhancing the detection process through the integrated tracking process in a
unified model.

Modified tracking loss. In Fig. 5(a), we conduct ablation studies on the
hyper-parameter γ in the modified tracking loss for suppressing positive as-
signments of inaccurate predictions. OneTrack achieves optimal tracking perfor-
mance when γ is set to 7.5. While the detection performance of OneTrack shows
improvement as γ increases, this gain becomes limited when γ exceeds 7.5.

Track age. We conduct ablation studies on the maximum preservation age
Aage of track queries. As illustrated in Fig. 5(b), a longer track age will lead to
more identity switches and decreased detection performance. We speculate that
this is because propagating too many outdated track queries will mislead the
object feature extraction process in the current frame.

Confidence threshold for track query initialization. We assess the im-
pact of Tconf in Fig. 5(c). The AMOTA performance will slightly increase as Tconf
increases, which results from the more accurate tracking predictions on average.
However, a higher Tconf reduces the initialization of track queries from detection
queries with low confidence. This limitation hinders tracking objects under poor
observation conditions, resulting in a higher number of identity switch cases.

Separated classification heads. As shown in Table 5, when its two clas-
sification heads share weights except for the final linear layer, the tracking and
detection performance of OneTrack is slightly worse than when the classifica-
tion heads are independent. We speculate that this is because the separation of
classification heads leads to the easier convergence of both heads.
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Table 5: Ablation on the separated classification heads for two tasks.

Cls heads AMOTA↑ IDS↓ NDS↑ mAP↑

shared 49.0 376 0.559 0.473
separated 49.2 315 0.566 0.478

Table 6: Computational cost comparison with recent works. All training time
costs and inference latencies are measured on a single A100 GPU. *: PF-Track is first
trained as a detector and then as a tracker for 12 epochs each. We train DQTrack and
OneTrack from scratch for 24 epochs.

Method Backbone Resolution Training
time cost

Inference
latency

PF-Track V2-99 800×320 34h+82h* 124.4ms
DQTrack V2-99 800×320 176h 115.2ms
OneTrack V2-99 800×320 87h 83.7ms

Computational cost. To ensure fair comparison, we apply gradient check-
pointing [7] on the decoder layers of all trackers. We measure their training
cost and inference latency on a single A100 GPU. As shown in Table 6, the
training cost of OneTrack is only half that of previous state-of-the-art trackers.
The inference latency of OneTrack is also significantly lower. We attribute the
low computational cost of OneTrack to its elegant model design. We do not
extend the tracker with various plug-in modules [31] or separate the detection
and tracking stages of the tracker [21], which will introduce additional computa-
tional burdens. Notably, OneTrack is trained from scratch while PF-Track and
DQTrack rely on extra training stages for achieving high tracking performance.

5 Conclusion

In this work, we delve into the optimization conflict between detection and track-
ing in end-to-end trackers, which arises from the partially conflicted classification
gradients between two tasks. Based on this observation, we propose to identify
the conflicted positive samples between two tasks through query grouping and
solve the conflicted gradients with the proposed gradient coordination, dynamic
attention mask, and suppression tracking positive samples of low quality. On the
nuScenes dataset, OneTrack outperforms all previous end-to-end trackers.
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