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This supplementary material provides more implementation details on FSD-
BEV in Sec. A, more experiment results in Sec. B and visualization results in
Sec. C.

A More Implementation Details

A.1 Data Augmentation

We first perform random scaling on the input images with a scaling factor in
the range of [0.5, 1.25]. Then, we crop the images according to the input size,
followed by flipping operations with a probability of 0.5. Finally, we rotate the
images within the range of [−5.4◦, 5.4◦] to obtain the augmented input images.
Similar to BEVDepth [1], we also perform data augmentation on BEV features.
The rotation range is [−22.5◦, 22.5◦], the scaling factor ranges from [0.95, 1.05],
and flipping is applied independently along the X and Y axes with a probability
of 0.5.

A.2 Details of Training

During training, we generate ground truth heatmaps by drawing elliptical Gaus-
sian distributions on the original image size and then performing rigid body
transformations similar to those applied to the image. We compute the depth
loss using Cross Entropy Loss. The center head in Centerpoint [2] is employed
as the detection head, using Gaussian Focal Loss to supervise the heatmap of
BEV features and L1 Loss as the regression loss.

We set the detection region along the X and Y axes to [−51.2, 51.2] and
along the Z axis to [−5, 3]. When our image input size is 256 × 704, the BEV
features are divided into sizes of 128 × 128. However, when we use larger image
input sizes, the BEV size is increased to 256 × 256.
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Fig. 1: Comparison of performance between baseline (BEVDepth) and FSD-BEV dur-
ing training. FSD-BEV is divided into student and teacher branches, and we evaluate
mAP and NDS on the nuScenes val set.

B More Experiment Results

B.1 Performance Analysis of the Training Process

We conduct a comparative analysis of the performance between the baseline
(BEVDepth) and FSD-BEV over the entire training process. Both of them use
ResNet50 as the backbone network and are trained for 24 epochs with the CBGS
strategy, and their performance is depicted in Fig. 1. During the training process,
it is observed that the precision of the FSD-BEV’s teacher branch increases and
consistently provides high-quality guidance to the student branch, resulting in
significant improvement compared to the baseline. After training for 20 epochs,
there is a slight decrease in the precision of BEVDepth, indicating the occurrence
of overfitting. On the contrary, FSD-BEV continues to demonstrate a growth
trend, which is attributed to the accurate depth information provided by the
teacher branch.

B.2 Statistics of Point Cloud Intensification

We quantify the efficacy of Point Cloud Intensification (PCI) by counting the
number of intensified ground truth (GT) 3D boxes in the nuScenes train dataset.
The proportions of the benefited GT boxes are illustrated in Fig. 2. It can be
observed that 10.4% of the GT boxes do not carry LiDAR points, which is
detrimental to generating high-quality teacher BEV. After applying PPA, 2.6%
of the GT boxes are appropriate for supplementing pseudo points, mitigating
the loss of objects information to a certain extent. If the Frame Combination
(FC) is first applied, the proportion of GT boxes without LiDAR points drops
to 6.9%, and the proportion of the GT boxes benefit from PPA drops to 1.5%,
demonstrating that FC can perform some of the functions of PPA. However,
there are still 5.4% of the GT boxes can not be supplemented by PCI. They
could have bad visibility or be located too distant, and boldly intensifying them
may introduce inaccurate information.
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Fig. 2: Statistics of the GT boxes modified by Point Cloud Intensification. (a) illus-
trates the proportion of benefited GT boxes solely after applying PPA, while (b) shows
the proportion of benefited GT boxes under the combined action of FC and PPA.
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Fig. 3: Visualization results of FSD-BEV and baseline (BEVDepth) on BEV heatmaps.
The red and green boxes represent the ground truth and predicted results, while orange
circles denote improvement examples of FSD-BEV compared to the baseline.



4 Z. Jiang, J. Zhang et al.

C Visualization

As shown in Fig. 3, we visualize the predicted BEV heatmaps and bounding
boxes of different models. The BEV heatmaps predicted by the teacher branch
of FSD-BEV match the GT boxes well, reflecting the effectiveness of hard labels.
Compared with the baseline, the heatmaps predicted by the student branch of
FSD-BEV are closer to the teacher’s high-quality BEV heatmaps, which leads
to more precise predicted boxes. Since the heatmaps are obtained from encoded
B̂s and B̂t mentioned in the main text, it indicates that our distillation scheme
works well on forcing B̂s to imitate B̂t.
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