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Abstract. The remarkable progress of Multi-modal Large Language
Models (MLLMs) has gained unparalleled attention. However, their ca-
pabilities in visual math problem-solving remain insufficiently evaluated
and understood. We investigate current benchmarks to incorporate ex-
cessive visual content within textual questions, which potentially assist
MLLMs in deducing answers without truly interpreting the input dia-
grams. To this end, we introduce MathVerse, an all-around visual
math benchmark designed for an equitable and in-depth evaluation of
MLLMs. We meticulously collect 2,612 high-quality, multi-subject math
problems with diagrams from publicly available sources. Each problem
is then transformed by human annotators into six distinct versions, each
offering varying degrees of information content in multi-modality, con-
tributing to 15K test samples in total. This approach allows Math-
Verse to comprehensively assess whether and how much MLLMs
can truly understand the visual diagrams for mathematical rea-
soning. In addition, we propose a Chain-of-Thought (CoT) evaluation
strategy for a fine-grained assessment of the output answers. Rather than
naively judging true or false, we employ GPT-4(V) to adaptively assess
each step with error analysis to derive a total score, which can reveal
the inner CoT reasoning quality by MLLMs. With MathVerse, we un-
veil that, most existing MLLMs struggle to understand math diagrams,
relying heavily on textual questions. Surprisingly, some of them even
achieve 5%+ higher accuracy without the visual input. Besides, GPT-
4V and MAVIS-7B achieve the best overall performance within closed-
source and open-source models, respectively. We hope the MathVerse
benchmark may provide unique insights to guide the future development
of MLLMs. Project page: https://mathverse-cuhk.github.io.
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As shown in the figure,
AB is parallel to CD,
and a straight line EF 
intersects AB at point E, 
intersects CD at point F, 
EG bisects angle BEF, 
and it intersects CD at 
point G, angle 1 = 50°, 
angle 2 is equal to ()

Question:
AB is the diameter of
⊙O, C is the point on
⊙O, passing point C is
the tangent of ⊙O and
intersects the extended
line of AB at point E,
OD ⊥ AC at point D, if
∠E = 30°, CE = 6.0, the
value of OD is ()

Question:
The curve y = f(x) and
the line y = -3, as shown 
in the figure, intersect at
the points (0, -3), (𝑎, -3),
and (𝑏, -3). The sum of
the area of the shaded
region enclosed by the
curve and the line is
given by ()

Question:
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(a)  Text Redundancy within Existing Benchmarks (b)  Ablation Study

Fig. 1: (a) We showcase three examples of Text Redundancy (highlighted in red)
within existing visual math benchmarks [6, 28, 44]. (b) We report an ablation study
by respectively removing the redundant texts and input diagrams on 120 randomly
selected problems, for closed-sourced [1, 16,32] and open-sourced [10,15,25] MLLMs.

1 Introduction

With the substantial advances of big data and computational power, Large Lan-
guage Models (LLMs) [2, 9, 20, 37, 38], such as ChatGPT [30] and GPT-4 [31],
have emerged as a central point of interest in both industry and academia.
To broaden their applicability across diverse contexts, Multi-modal Large Lan-
guage Models (MLLMs) [14, 18, 40, 46] have recently become a fast-evolving
track, exemplified by the latest GPT-4V [32], Gemini [16], and the open-source
LLaVA [21,22, 26] and SPHINX [15, 23]. Concurrently, a diverse array of evalu-
ation benchmarks [11,12,17,27,36,42] are curated to assess their visual compre-
hension performance across different domains. Notably, the capability to solve
mathematical problems involving diagrams serves as a critical measure, offer-
ing insights into the multi-modal logical thinking prowess of MLLMs. This task
demands MLLMs to accurately decode the visual elements, and correlate them
with the textual condition for mathematical reasoning. Previous efforts [29,34],
e.g., GeoQA [4,6] and UniGeo [5], concentrate on geometric problems, while the
recent MathVista [28] and MMMU [44] expand the scope to encompass broader
disciplines, including functions, charts, and scientific problems.

However, through our comprehensive observation and analysis, we identify
three primary issues in current mathematical benchmarks for evaluating MLLMs:

i. Do MLLMs truly see the math diagrams in evaluation? This is
the most fundamental question concerning the accurate assessment of visual
math problem-solving. In Figure 1 (a), we showcase three examples from
current benchmarks. We observe their texts contain too much duplicate in-
formation (highlighted in red) that is also depicted in the diagram. This
redundancy might inadvertently provide MLLMs with a shortcut to resolve
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Question:

For what x does f reach its local maximum? GPT-4V: Gemini-Pro: SPHINX-MoE:

The graph shows two functions:
f(x) in blue, and f’(x) in orange …

To find f(x)’s local maximum, we 
look at where f'(x) is zero.

The graph of f'(x) crosses the x-
axis at two points, and a local 
maximum is where the derivative 
changes from positive to negative …

This occurs just to the left of the 
y-axis, a little before x=0 …

It appears to be around x = -1.

The graph shown is the derivative 
of the function f, denoted by f′(x).

The derivative of a function is 
zero at the relative extrema of 
the original function …

Since f′(x) is positive on the 
interval 2<x<7, we know that f is 
increasing over that interval …

f has a local minimum at x=2 and a 
local maximum at x=7 …

f reaches a local maximum at x=7.

✓

×

✓

✓

×

✓

×

✓

×

×

The graph shows f(x) and 
its derivative f’(x) …

f(x) is a parabola with a 
vertical axis of symmetry.

This means that f(x) will 
have a U-shape, with the 
vertex at the point (4, 0).

The local maximum of f(x) 
occurs when x = 4, the 
point where the graph of 
f’(x) intersects the x-axis.

✓

×

×

×

✓ Correct × Incorrect

Answer: x = 3

Fig. 2: Comparison of Visual Mathematical Reasoning by Three MLLMs.
Despite the incorrect final answer, GPT-4V [32], Gemini-Pro [16], and SPHINX-
MoE [15] exhibit different levels of quality in the intermediate reasoning process.

the problem by mostly reading the text, rather than interpreting the dia-
gram. Our hypothesis gains support from the experiment in Figure 1 (b).
For 40 randomly sampled problems from each benchmark, we remove such
redundant texts from the question, challenging MLLMs to capture the cor-
responding information exclusively from visual inputs. The results reveal a
significant drop in accuracy among most MLLMs (the blue column), even
falling below the scores without taking diagrams as input (the grey column).
This outcome suggests that MLLMs primarily depend on textual cues
rather than the visual diagrams themselves to solve these problems
in evaluation. Given this, we demonstrate that current visual math bench-
marks might not be comprehensive enough to assess the genuine multi-modal
mathematical reasoning capabilities of MLLMs.

ii. Is it equitable to assess solely by the final answer? Most existing
multi-modal benchmarks directly compare model outputs with ground truths
to derive a binary evaluation result. While this approach may suffice for
general visual contexts, it falls short in math problems that require intri-
cate step-by-step reasoning. In Figure 2, we examine three model outputs.
Although they all arrive at incorrect answers in the end, they demonstrate
varying levels of precision in the intermediate reasoning processes. Merely
categorizing these outputs as ‘Incorrect’ fails to capture the nuanced differ-
ences in the reasoning quality of different MLLMs.

iii. Do they specialize in mathematical reasoning evaluation? GeoQA,
UniGeo, and other previous works narrowly target specific aspects of plane
geometry. This limits the evaluation of broader mathematical capabilities,
e.g., functions and solid geometry. Instead, MathVista expands its scope
by including a wide array of peripheral tasks (19 out of 28), encompassing
natural images, statistic plots, and charts, which do not directly evaluate
professional math skills. Furthermore, the math problems in MMMU are
of college-level complexity with extensive domain-specific knowledge, poten-
tially hindering MLLMs from fully demonstrating their reasoning capacity.
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Question:

AB and CD are two
diameters of circle O,
chord DE parallel AB,
arc DE is the arc of
50°, then angle BOC
is (). Choices: …

Descriptive Information

Implicit Property

Essential Condition

Question:

The graph shows 𝑦! =
𝑥" passing (0,0) and a
vertical or horizontal
translation 𝑦# passing (-
2,0). Write an equation
for 𝑦# as shown.

Find the surface area
of the cylinder shown.
The height is 10 cm
and the radius is 6 cm. 
Give your answer to
two decimal places.

Question:

Three Categories of Texts:

Six Versions of a Problem:

Text-dominant
Text-lite
Text-only

Vision-intensive
Vision-dominant
Vision-only

📖
🔍

Answer: 603.19 cm#Answer:(A) 115° 𝑦# = 𝑥 + 2 "Answer:

Subject: LengthSubject:Angle ExpressionSubject:

Decrease Text Content

Increase Vision content

Solid Geometry: Functions:Plane Geometry:

Fig. 3: Three Categories of Question Texts in MathVerse. According to the
significance for problem-solving, we categorize the question texts into three categories,
and transform each problem into six versions for evaluation, with varying content in
multi-modality. We present three examples in MathVerse for illustration.

Therefore, in light of the issues discussed, we present MathVerse, a holis-
tic and specialized visual math benchmark crafted to evaluate the multi-modal
mathematical reasoning skills of MLLMs. This benchmark encompasses a metic-
ulously collected dataset of 2,612 visual math problems, with 1,236 newly ac-
quired from public question repositories and 1,376 selected from existing bench-
marks, ensuring a diverse range of challenges. To specialize in mathematical rea-
soning, MathVerse spans three primary areas: plane geometry, solid geometry,
and functions. Each problem has been rigorously reviewed by expert annotators
and classified into twelve detailed categories, emphasizing different fine-grained
problem-solving capabilities. Notably, MathVerse distinguishes itself by intro-
ducing two novel strategies for evaluating MLLMs.

First, we investigate the influence of textual redundancy and validate whether
MLLMs can interpret the diagrams for mathematical reasoning. As illustrated in
Figure 3 (Left), we categorize the textual content within the questions into three
different types: Descriptive Information, Implicit Property, and Essential Con-
dition. These categories, arranged in ascending order of significance for problem-
solving, correspond to information directly observable from the diagram, implicit
spatial properties that demand advanced visual perception, and specific mea-
surements crucial for computing the solution, respectively. Based on this prob-
lem formulation, expert annotators progressively remove the textual information
from the questions in MathVerse, while incrementally incorporating elements
into the visual diagrams to ensure problems are adequately defined. As shown
in Figure 3 (Right), this process results in six unique versions of each problem
characterized by a reduction in textual content and an enhancement in visual
elements, creating a total of 15K test samples. These delicately curated problems
can indicate the various multi-modal capabilities of MLLMs, such as geometric
element understanding, function curve perception, and numerical value recog-
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nition, which thoroughly unveils whether and how much they comprehend the
visual diagram for mathematical reasoning.

Second, to rigorously assess the visual Chain-of-Thought (CoT) capabili-
ties [39], we propose a CoT Evaluation strategy for the step-by-step reason-
ing assessment of MLLMs. For each model’s output, we leverage GPT-4 to first
extract several crucial steps exclusively from the solving process, deliberately
omitting the input of the question and answer. This approach aims to mitigate
the bias towards GPT-4’s inherent question-answering propensities. Then, the
corresponding question, diagram, and ground-truth answer are fed into GPT-
4 to evaluate each identified critical step, and provide detailed error analysis.
Finally, the overall score is obtained by considering every single step within rea-
soning. Note that, we do not pre-define a ground-truth key-step template, since
each math problem may encompass a variety of solution pathways, and different
MLLMs tend to exhibit variable reasoning lengths. With CoT scoring, Math-
Verse showcases a fine-grained evaluation of the intermediate logical deduction
skills of MLLMs, demonstrating their visual mathematical CoT capabilities.

We conduct extensive experiments on MathVerse with popular closed-
source [1, 16, 32] and open-source [10, 15, 25, 47] MLLMs. Comparing different
problem versions, we unveil that, most existing MLLMs struggle to understand
math diagrams, relying heavily on textual questions. Therein, GPT-4V [32] and
MAVIS-7B [47] achieve the best overall performance within closed-source and
open-source models. Surprisingly, some of the MLLMs even attain much higher
results without the diagram input. With the fine-grained error analysis pro-
duced by our CoT evaluation strategy, we demonstrate such results are due
to their deficient visual encoding capacity for mathematical diagrams, which
instead acts as a distraction for problem-solving. In contrast, GPT-4V and
InternLM-XComposer2 [10] demonstrate relatively better comprehension of the
visual content for mathematical reasoning. Our experimental results suggest that
inadequate mathematical visual interpretation capabilities represent the most
significant impediment for MLLMs in addressing multi-modal math problems,
indicating substantial potential for advancement.

The contributions of this paper are summarized as follows:

– We investigate primary issues within existing benchmarks and introduce
MathVerse, an all-around multi-modal benchmark evaluating the visual
mathematical reasoning of MLLMs. The meticulously curated dataset con-
tains 20K test problems with diagrams for a comprehensive assessment.

– By modifying problems with varying information content in multi-modality,
we explore whether and how much MLLMs can understand the visual dia-
grams for mathematical reasoning, rather than relying on question texts.

– We propose a CoT Evaluation strategy with GPT-4 to extract and assess
each key step in the reasoning process of MLLMs, which provides a fine-
grained evaluation of their multi-modal mathematical CoT capabilities.
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Table 1: MathVerse Statistics.

Statistic Number

Total questions 2,612
- Multiple-choice questions 1,631 (62.4%)
- Free-form questions 981 (37.6%)
- Newly collected questions 1,236 (47.3%)
- Existing-dataset questions 1,376 (52.7%)
- Questions with explanations 1,236 (47.3%)

Total test samples 15,672
- Newly annotated samples 10,448 (66.7%)
- Samples of each version 2,612 (16.7%)

Number of unique images 2,420 (92.6%)
Number of unique questions 2,573 (98.5%)
Number of unique answers 847 (32.4%)

Maximum question length 1,311
Maximum answer length 102
Average question length 204.8
Average answer length 6.3

Fig. 4: Subject Distribution of
MathVerse. Solid G: Solid Ge-
ometry, Plane G: Plane Geometry.
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2 MathVerse

In Section 2.1, we first present an overview of the curated visual math dataset
in MathVerse. Then, in Section 2.2, we introduce our data formulation ap-
proach for investigating the visual mathematical comprehension of Multi-modal
Large Language Models (MLLMs). Finally, in Section 2.3, we elaborate on the
methodology of our proposed Chain-of-Thought (CoT) evaluation strategy.

2.1 Visual Math Dataset

To thoroughly assess visual mathematical proficiency, we compile a comprehen-
sive problem set covering a broad spectrum of math subjects, diagram patterns,
and specialized knowledge domains. This widespread collection for MathVerse
aims to pose diverse challenges to MLLMs, ensuring a robust evaluation of their
capabilities in visual contexts.

Data Composition and Categorization. MathVerse comprises a total of
2,612 visual math problems, which contribute to the final created 15K test sam-
ples. Detailed statistics for data composition are presented in Table 1. This metic-
ulously collected dataset covers three fundamental math subjects, i.e., plane ge-
ometry (1,746), solid geometry (332), and functions (534), where the latter two
are all composed of newly collected problems. The choice of these three subjects
is not only due to their rigorous demands on multi-modal reasoning, but also
for two other considerations. For one thing, as we specialize MathVerse in
mathematical problem-solving, other peripheral tasks in MathVista [28] are not
included, e.g., statistical reasoning, table question-answering, and puzzle tests.
For another, we expect the evaluation can fully display the reasoning capabilities
of MLLMs with moderate-level mathematical knowledge. This avoids limiting
their performance with overly complex domain-specific theorems or prior com-
monsense knowledge. Therefore, we deliberately focus the collected problems on
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the high school level, excluding advanced college-level disciplines like calculus
and graph theory featured in MMMU [44]. Furthermore, expert annotators sub-
divide the problems into twelve fine-grained categories, as depicted in Figure 4,
showcasing various dimensions of visual mathematical skills.

Data Collection and Review Process. Our collection procedure for high-
quality visual math problems involves a rigorous selection from both pre-existing
datasets and public question repositories. In the domain of plane geometry, we
initially select 750 problems from GeoQA [6], 119 from GEOS [34], and 507 from
Geometry3K [29], based on their original data quality and distribution. We ex-
clude questions that are extremely simple or excessively complex, as well as those
that appear dubious or lack necessary conditions. To enhance the diversity of
question types and diagram styles, we further enrich our dataset with additional
370 plane geometry problems by manually collecting from other sources1,2,3.
Given the scarcity of solid geometry and function-related problems in existing
benchmarks, we purposefully gather these two types of problems (332 and 534,
respectively) from new sources1,2,3 to address this gap. Problems that include
multiple diagrams or require visual illustrations within solutions are excluded,
considering the current limitations of MLLMs in resolving such information. Note
that, all the newly collected problems (1,236) accompany detailed explanations.
After the preliminary collection, we undertake a comprehensive review to verify
the accuracy of the answers, ensure consistency between questions and diagrams,
and confirm the relevance of each problem to the defined twelve categories. This
meticulous review guarantees the dataset’s quality and precision.

2.2 Whether MLLMs Truly See the Diagrams?

In this section, we detail our data formulation approach to transform each prob-
lem in MathVerse into six different versions with varying information content
in multi-modality. In this way, we specifically explore the visual diagram under-
standing capabilities of MLLMs for mathematical reasoning.

Three Types of Textual Information. Considering the textual redundancy
in original math problems, we first define three distinct categories for the textual
information within the questions, as illustrated in Figure 3 and the following:

– Descriptive Information (DI) refers to the directly observable and clearly
portrayed content in the diagram. It depicts the basic figure composition,
spatial arrangement, and annotated entities, such as the presence of geo-
metric shapes or intersection points of functions. Nevertheless, such infor-
mation is repetitive to the visual components present in the diagram, thus
regarded as redundant information for problem-solving. More importantly,
it may assist MLLMs in bypassing the process of diagram interpretation,
thereby undermining the assessment for visual mathematical reasoning in
existing benchmarks, as evidenced in Figure 1.

1homework.study.com 2www.ixl.com/math 3mathspace.co/us
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AB and CD are two
diameters of circle O,
chord DE parallel AB,
arc DE is the arc of
50°, then angle BOC
is (). Choices: …

Text Dominant Text Lite Text Only Vision Intensive Vision Dominant Vision Only

Chord DE parallel AB,
arc DE is the arc of
50°, then angle BOC
is (). Choices: …

Arc DE is the arc of
50°, then angle BOC
is (). Choices: …

Chord DE parallel AB,
then angle BOC is ().
Choices: …

Text
Input

Vision
Input

50°

🔍

📖

Descriptive Information Implicit Property Essential Condition

Text Dominant Text Lite Vision Dominant Text Dominant Text Lite Vision Dominant

Find the surface area
of the cylinder shown.
The height is 10 cm
and the radius is 6 cm. 
Give your answer to
two decimal places.

Find the surface area
of the cylinder shown.
and the radius is 6 cm. 
Give your answer to
two decimal places.

Find the surface area
of the cylinder shown.
Give your answer to
two decimal places.

6 cm

The graph shows 𝑦! =
𝑥" passing (0,0) and a
vertical or horizontal
translation 𝑦# passing (-
2,0). Write an equation
for 𝑦# as shown.

The graph shows 𝑦! =
𝑥" and a vertical or
horizontal translation
𝑦#. Write an equation
for 𝑦# as shown.

The graph shows 𝑦! and
a vertical or horizontal
translation 𝑦# . Write an
equation for 𝑦# as shown.

y! = x"y#

50°

Chord DE parallel AB, then
angle BOC is (). Choices: …

AB and CD are two
diameters of circle O,
chord DE parallel AB,
arc DE is the arc of
50°, then angle BOC
is (). Choices: …

Fig. 5: Six Versions of Each Problem in MathVerse. Expert annotators metic-
ulously transform each visual math problem within MathVerse into six versions. They
contain different vision-language content for a holistic visual mathematical evaluation.

– Implicit Property (IP) involves the information that requires a higher
level of visual perception but less mathematical knowledge to discern from
the diagram. It signifies strong visual conditions for problem-solving, such
as the parallelism and perpendicularity between lines, the similarity and con-
gruence among triangles, and the category and periodicity of functions. They
can, in theory, be fully extracted from the diagrams alone, given adequate
capability for visual recognition and comprehension of MLLMs.

– Essential Condition (EC) denotes the specific numerical or algebraic mea-
surements, which are indispensable conditions to derive the solution and
cannot be derived from the visual diagram. This category encompasses pre-
cise values of angles, lengths, and function expressions, such as an angle
being 45 degrees, the length of BC being 6 units, and the functional equation
f(x) = x2 + 3. Without these details in textual information, solving the
visual math problem would be impossible.

Creating Six Versions of Each Problem. Based on the three categories,
expert annotators systematically remove different textual information within
questions, and incrementally incorporate the critical elements into diagrams.
This approach can progressively reduce textual redundancy and information
content, thereby increasingly compelling MLLMs to capture mathematical con-
ditions from the visual input. As compared in Figure 5, we generate six versions
of each problem in MathVerse, obtaining 15,672 test instances. With this cu-



MathVerse 9

rated problem set, we can provide a holistic evaluation of the genuine visual
comprehension of MLLMs, and whether it can facilitate multi-modal mathemat-
ical reasoning. The details of each problem version are as follows:

– Text-dominant Version retains the entire textual content, Descriptive In-
formation, Implicit Property, and Essential Condition, alongside the question
statement. It may induce MLLMs to regard the text as the primary source
of information, treating the diagram more as a supplementary visual aid.
This serves as the baseline point for evaluation.

Text: DI + IP + EC + Question Vision: Diagram (1)

– Text-lite Version diminishes the Descriptive Information from the Text-
dominant version, assuming this information can be observed from the di-
agram. This creates a condensed text question without redundancy, and
enforces MLLMs to interpret the diagram for basic information.

Text: IP + EC + Question Vision: Diagram (2)

– Text-only Version directly discards the diagram input from the Text-
dominant version. Comparing this to the Text-lite version helps identify
where MLLMs mainly obtain the contextual visual information for problem-
solving, the Descriptive Information or the diagram.

Text: DI + IP + EC + Question Vision: ∅ (3)

– Vision-intensive Version further removes the Implicit Property from the
Text-lite version. Without the strong visual condition in texts, MLLMs are
challenged to intensively leverage their visual interpretation skills to gather
sufficient cues for mathematical reasoning. The outcome demonstrates their
proficiency in understanding mathematical relationships visually.

Text: EC + Question Vision: Diagram (4)

– Vision-dominant Version, building upon the Text-lite version, excludes
the Essential Condition from texts, instead annotating these measurements
visually in diagrams. The textual content is narrowed down to Implicit Prop-
erty and question statements. It demands MLLMs to recognize the Essential
Condition exclusively from diagrams, and accurately correlate it with corre-
sponding visual elements for problem-solving.

Text: IP + Question Vision: Diagram + EC (5)

– Vision-only Version strips away the entire textual input, conveying the
problem solely through the diagram. We render the remaining textual con-
tent in the Vision-dominant version onto the diagram, and minimize the
text to an almost negligible prompt. This compels MLLMs to extract figures
and recognize questions both from the visual information, standing as an
ultimate test for their visual reasoning capabilities in mathematics.

Text: ∅ Vision: Diagram + EC + IP + Question (6)
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1. The model correctly identifies that BC and ED are parallel.

2. The equation AB / BC = CD / DE is incorrect because it doesn't
reflect the correct sides according to similar triangles.

3. The calculation of the equation is correctly performed, but
since the equation itself is incorrect, this step is also incorrect.

4. The model correctly solves for x based on the incorrect
equation. Since the equation is wrong, this step is also incorrect.

5. The model substitutes x into CD = x + 5 to find CD, which would
be correct if the value of x was correct. Since the value of x is
based on an incorrect equation, this step is also incorrect.

6. The final answer provided by the model is D: 40, which matches
the ground truth answer. Despite the incorrect steps, the final
answer is coincidentally correct.

×

✓

×

1/1

0/1

0/1

×

×

0/1

0/1

Key-step Extraction

1. Identify that BC and ED are parallel, forming a proportion equation.

2. Set up the equation: AB / BC = CD / DE.

3. Substitute the given values into it: 16 / (x - 3) = (x + 5) / 20. Expand and 
simplify the equation to get: 16x + 80 = 20x – 60.

4. Solve for x: 4x = 140, x = 35.

5. Substitute x into CD = x + 5 to find CD: CD = 35 + 5 = 40.

6. The final answer is D: 40.

✓ 1/1

Multi-step Score:  (1 + 0 + 0 + 0 + 0 + 1) / 6 = 1/3 ≈ 0.33
Final CoT Evaluation Score: 0.33 × 0.7 + 1 × 0.3 = 0.53

Multi-step Scoring

BC and ED are parallel. Find
CD if AC = x - 3, BE = 20, AB
= 16, and CD = x + 5. Choices: 
A:32 B:35 C:36 D:40

Question:

× 0/1

✓ 1/1

1. Use the slope-intercept form of a linear equation: y = mx + b.

2. Find the slope (m) using the formula: m = (y2 - y1) / (x2 - x1). Using the 
points (-3, 0) and (0, -6): m = (-6 - 0) / (0 - (-3)), m = -2.

3. Find the y-intercept (b) using one of the points and the slope-intercept 
form of the equation: 0 = -2 * (-3) + b, b = -6.

4. Since the line is solid, the inequality is either y ≤ -2x - 6 or y ≥ -2x - 6. 

5. The region below the line is shaded, which means the values of y should 
be less than or equal to -2x - 6.

6. The inequality describing the region drawn in the plane is: y ≤ -2x – 6.

1. The model correctly states that the slope-intercept form of a
linear equation is y = mx + b.

2. The model correctly calculates the slope (m) using the given
points (-3, 0) and (0, -6).

3. The model correctly finds the y-intercept (b) using one of the
points and the slope-intercept form of the equation.

4. The equation of the line is correctly stated as y = -2x - 6.

5. The model incorrectly states that the region below the line is
shaded. However, based on the diagram and the ground truth
answer, the region above the line is shaded.

6. The final inequality provided by the model is y ≤ -2x - 6, which
does not match the ground truth answer of y ≥ -2x - 6.

Multi-step Scoring

Key-step Extraction

Multi-step Score:  (1 + 1 + 1 + 1 + 0 + 0) / 6 = 2/3 ≈0.67
Final CoT Evaluation Score: 0.67 × 0.7 + 0 × 0.3 = 0.47

✓ 1/1

✓ 1/1

✓ 1/1

× 0/1

Answer: D: 40

Subject:

Model Output

Model Output

The line passes through the points (-3, 0) and (0, -6). We can use
these points to find the equation of the line. Let‘s use the slope-
intercept form of a linear equation: y = mx + b, where m is the slope
and b is the y-intercept. First, we’ll find the slope (m) …

Since B C and E D are parallel, they form a proportion. Therefore, we
can set up the following equation: A B / B C = C D / D E. Substituting
the given values, we get: 16 / (x - 3) = (x + 5) / 20. Cross-multiplying, we
get: 16(x + 5) = 20(x - 3). Expanding and simplifying, we get: 16x + 80 =
20x – 60, 4x = 140, x = 35. …

Length

Version: Text Lite

The x-intercept of the line
is -3 and the y-intercept is
-6. State the inequality
that describes the region
drawn in the plane.

Question:

Answer: y ≥ -2x - 6.

Subject: Expression

Version: Text Dominant

Fig. 6: Examples of the CoT Evaluation Strategy for MathVerse. We present
two outputs from Qwen-VL-Max [1] with our CoT evaluation strategy, which assesses
the fine-grained reasoning capabilities with a detailed explanation for error analysis.

2.3 CoT Evaluation Strategy

Compared to visual question-answering in general scenarios, the solving process
of MLLMs for mathematical problems requires nuanced, step-by-step CoT rea-
soning. Considering two cases in Figure 6, one arrives at the correct solution
albeit through incorrect intermediary steps, while the other demonstrates the
opposite phenomenon. Therefore, the binary ‘Correct’ or ‘Incorrect’ evaluative
approach of existing benchmarks is inadequate to accurately examine the depth
and precision of the multi-step reasoning of MLLMs. To this end, we propose a
CoT Evaluation strategy to thoroughly assess their mathematical CoT skills in
visual contexts, which involves two prompting phases with GPT-4(V) [31,32].

Key-step Extraction. Given the output of an MLLM, we first employ GPT-4,
the language-only version, to extract N pivotal steps within the reasoning se-
quence, denoted as [s1, s2, . . . , sN ], including the final answer sA. Such key steps
include significant computational outcomes, the identification of visual compo-
nents, and critical immediate inferences. Note that, we only prompt GPT-4 with
the MLLM’s output, deliberately omitting the original questions, diagrams, and
ground-truth answers. This approach aims to mitigate the inherent bias of GPT-
4 itself towards problem-solving and visual diagram interpretation, thereby con-
centrating solely on the logical coherence of the model output. In addition, we do
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not pre-define a ground-truth key-step template for each problem, but perform
the extraction adaptively for the unique output of every MLLM. Since the prob-
lem potentially encompasses diverse possible solution pathways, and different
MLLMs exhibit varying reasoning lengths and styles, the rigid template would
harm the CoT Evaluation accuracy.

Multi-step Scoring. After the extraction phase, we utilize GPT-4V, the multi-
modal version, to evaluate each critical step and culminate a comprehensive
score. We feed the extracted key steps, the original questions, diagrams, and
ground-truth answers all into GPT-4V, contributing to a holistic assessment, e.g.,
numerical computations, logical deductions, and visual interpretations. Therein,
we observe that GPT-4V occasionally struggles with accurately recognizing el-
ements within functional diagrams, leading to unstable evaluation for related
problems. We thereby annotate additional information for function problems and
together feed into GPT-4V, ensuring the quality of visual evaluation. Specifically,
GPT-4V assesses each N intermediate step with a binary score of ‘1’ (correct)
or ‘0’ (incorrect), and derives the overall score by aggregating the correctness of
the final answer. We formulate the scoring process as

Scorefinal = α
( 1

N

N∑
i=1

Score(si)
)
+ (1− α)Score(sA), (7)

where α denotes a balancing factor between the intermediate steps and the
final answer sA. We set α as 0.7 by default to underscore the significance of
CoT reasoning. As exemplified in Figure 6, besides the fine-grained scoring, the
CoT evaluation can also provide a detailed error analysis of each step, which is
valuable and instructive for the development of MLLMs in the field.

3 Experiments

In this section, we conduct a systematic evaluation of MLLMs on MathVerse.
We showcase the direct accuracy results in Table 2 and compare the performance
using Chain-of-Thought (CoT) Evaluation strategy in Table 3.

3.1 Experimental Setup

Division of the testmini Subset. To enable faster evaluation and model
development validation, we extract a smaller subset termed testmini including
788 problems and 4,728 instances. We employ a random sampling strategy across
different subfields, maintaining a sample size proportional to the overall dataset.
In subsequent experiments, all results are based on the testmini subset.

Evaluation Schemes. We examine foundation models across three distinct
categories on MathVerse: (a) Large Language Models (LLMs) (only take tex-
tual questions as input), (b) Closed-source MLLMs, and (c) Open-source MLLMs.



12 R. Zhang and D. Jiang et al.

Table 2: Accuracy Comparison on MathVerse’s testmini Set. We report the
‘Acc’ results using naive ‘True’ or ‘False’ evaluations without the CoT strategy. The
‘All’ score is calculated without averaging the ‘Text Only’ version. The highest results
for closed-source and open-source MLLMs is marked in red and blue. This is the
main leaderboard of MathVerse, which is continuously being updated.

Model Base
LLM

All Text
Dominant

Text
Lite

Text
Only

Vision
Intensive

Vision
Dominant

Vision
Only

Accuracy Evaluation

Baselines

Random Chance - 12.4 12.4 12.4 12.4 12.4 12.4 12.4
Human - 67.7 71.2 70.9 41.7 61.4 68.3 66.7

LLMs

ChatGPT [33] - 26.1 33.3 18.9 33.3 - - -
GPT-4 [31] - 33.6 46.5 20.7 46.5 - - -

Closed-source MLLMs

Qwen-VL-Plus [1] - 11.8 15.7 11.1 14.5 9.0 13.0 10.0
Gemini-Pro [16] - 23.5 26.3 23.5 27.3 23.0 22.3 22.2
Qwen-VL-Max [1] - 25.3 30.7 26.1 28.9 24.1 24.1 21.4
GPT-4V [32] - 39.4 54.7 41.4 48.7 34.9 34.4 31.6

Open-source MLLMs

LLaMA-Adapter V2 [14] LLaMA-7B [37] 5.8 7.8 6.3 3.9 6.2 4.5 4.4
ImageBind-LLM [19] LLaMA-7B 10.0 13.2 11.6 12.9 9.8 11.8 3.5
mPLUG-Owl2 [41] LLaMA-7B 10.3 11.6 11.4 13.8 11.1 9.4 8.0
MiniGPT-v2 [7] LLaMA2-7B [38] 10.9 13.2 12.7 15.3 11.1 11.3 6.4
SPHINX-MoE [15] Mixtral-8×7B [20] 15.0 22.2 16.4 18.3 14.8 12.6 9.1
G-LLaVA [13] LLaMA2-7B 15.7 22.2 20.4 21.6 16.5 12.7 6.6
InternLM-XC2. [10] InternLM2-7B [3] 16.5 22.3 17.0 16.5 15.7 16.4 11.0
ShareGPT4V [8] Vicuna-13B [48] 17.4 21.8 20.6 14.6 18.6 16.2 9.7
Math-LLaVA [35] Vicuna-13B 19.0 21.2 19.8 35.7 20.2 17.6 16.4
LLaVA-NeXT [25] NH2. Yi 34B [43] 23.4 27.7 24.9 28.6 24.6 21.3 18.7
MAVIS-7B [47] Mammoth2-7B [45] 27.5 41.4 29.1 38.6 27.4 24.9 14.6

All our experiments are conducted under a zero-shot setting. For ‘Random
Chance’, we randomly select one option for multiple-choice questions and utilize
empty for free-form questions. We also ask ten qualified college students to solve
the problems independently to obtain the ‘Human’ performance.

3.2 Experimental Analysis

MLLMs Rely More on DI than Seeing Diagrams. Comparing the Text-
lite and Text-only versions, some MLLMs encounter a larger performance drop
by removing the redundant Descriptive Information than removing the diagram
input, e.g., GPT-4V and MAVIS-7B. This pattern demonstrates that they tend
to capture more visual information for mathematical reasoning from the text con-
tent, instead of seeing the diagram itself. However, for other current MLLMs, the
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Table 3: CoT Evaluation on MathVerse’s testmini Set. We employ the CoT
strategy for finer-grained evaluation of MLLMs. The ‘All’ score is calculated with-
out averaging the ‘Text Only’ version. The highest results for closed-source and
open-source MLLMs are marked in red and blue.

Model Base
LLM

All Text
Dominant

Text
Lite

Text
Only

Vision
Intensive

Vision
Dominant

Vision
Only

Chain-of-Thought (CoT) Evaluation

LLMs

ChatGPT [33] - 44.9 51.3 38.5 51.3 - - -
GPT-4 [31] - 52.1 63.4 40.7 63.4 - - -

Closed-source MLLMs

Qwen-VL-Plus [1] - 21.3 26.0 21.2 25.2 18.5 19.1 21.8
Gemini-Pro [16] - 34.5 41.6 36.8 43.7 34.0 33.0 27.4
Qwen-VL-Max [1] - 37.5 45.4 38.9 46.1 36.7 31.9 34.6
GPT-4V [32] - 53.6 64.6 56.7 58.9 51.5 51.2 43.9

Open-source MLLMs

LLaMA-Adapter V2 [14] LLaMA-7B [37] 5.7 6.2 5.9 2.7 6.1 4.2 6.1
LLaVA-NeXT [25] Vicuna-13B [48] 15.8 22.5 20.0 24.5 17.1 16.9 2.3
ImageBind-LLM [19] LLaMA-7B 9.3 11.4 11.3 11.7 8.9 11.2 3.4
mPLUG-Owl2 [41] LLaMA-7B 4.6 6.6 6.3 6.1 6.3 5.6 4.9
MiniGPT-v2 [7] LLaMA2-7B [38] 11.0 12.1 12.0 11.7 13.1 10.3 7.4
LLaVA-1.5 [24] Vicuna-13B 7.6 8.8 7.6 11.5 7.4 7.4 6.9
SPHINX-Plus [15] LLaMA2-13B 12.2 13.9 11.6 14.9 11.6 13.5 10.4
G-LLaVA [13] LLaMA2-7B 16.6 20.9 20.7 21.1 17.2 14.6 9.4
ShareGPT4V [8] Vicuna-13B 13.1 16.2 16.2 6.6 15.5 13.8 3.7
SPHINX-MoE [15] Mixtral-8×7B [20] 26.4 36.8 28.6 35.6 26.0 22.0 18.4
InternLM-XC2. [10] InternLM2-7B [3] 27.4 35.8 28.2 39.0 25.3 26.4 21.3

elimination of visual input even leads to an unexpected performance improve-
ment, e.g., Gemini-Pro and Math-LLaVA. This suggests that the unsatisfactory
visual encoding for mathematical diagrams instead severely harms the original
problem-solving capacity of MLLMs. As exemplified in Figure 7, from the error
analysis of our CoT evaluation strategy, we observe that Gemini-Pro can deduce
the correct answer exclusively by the visual information within the Descriptive
Information. Instead, the inaccurate visual perception directly interferes with
the outcome of problem-solving, turning correct answers into incorrect ones.

MLLMs are Moderately Effective at Perceiving IP. By discarding the
Implicit Property in question texts, a negligible decline in accuracy is noted
from the Text-lite to Vision-intensive versions for most MLLMs. This is because
the Implicit Property mainly encompasses the spatial layouts and geometric
relationships, which demand minimal mathematical domain knowledge for in-
terpretation. This outcome underscores the favorable visual perception skills of
MLLMs for non-mathematical elements, which is not the primary obstacle hin-
dering MLLMs in solving visual math problems.
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✓ 1/1

Text Only

Multi-step Score:  1
Final CoT Evaluation Score:  1

✓ 1/1

✓ 1/1

✓ 1/1

For the curve graphed
below, whose asymptote is
x-axis and x=4, determine
if it has an inverse function.
Choices: A:Yes B:No

Question:

Answer: A: Yes

Subject: Property

× 0/1

✓ 1/1

Text Dominant

Multi-step Score:  (1 + 0 + 0 + 0) / 4 = 0.25
Final CoT Evaluation Score:  0.25 × 0.7 + 0 × 0 = 0.175

× 0/1

1. This step is correct as the model correctly states the definition of a
one-to-one function, which is necessary to determine if a function has
an inverse.

2. Analyze the function graph. This step is incorrect. The model_output
incorrectly states that the value 0 on the y-axis corresponds to both
the value 4 and the value -4 on the x-axis, which is not supported by
the image.

3. Conclude that the function does not have an inverse function because it
is not one-to-one. This conclusion is based on the incorrect analysis in
step 2. Since step 2 is incorrect, this conclusion is also incorrect.

4. The final answer provided by the model_output is incorrect because
the function appears to be one-to-one based on the image.

× 0/1

1. Correct, the horizontal line test is a
valid method to determine if a
function has an inverse.

2. Correct, based on the provided
information, it appears that no
horizontal line would intersect the
function more than once.

3. Correct, following the logic of steps
1 and 2, the conclusion is valid.

4. Correct, the answer A corresponds
to the conclusion that the function
does have an inverse.

Visual Perception Error

Fig. 7: A Typical Visual Perception Error by our CoT Evaluation Strategy.
The example is an output from Gemini-Pro [16], where the correct reasoning of the
Text-only version is distracted by the visual perception error within the diagram.

MLLMs are Challenged to interpret EC from Diagrams. Incorporat-
ing the Essential Condition within diagrams challenges MLLMs to accurately
identify and understand these conditions in vision modality for mathematical
problem-solving. Evidence from the Vision-dominant results indicates a notable
decline in the performance of most MLLMs compared to the Text-lite accu-
racy. This reveals their inaccurate identification of mathematical symbols and
an insufficient grasp of domain-specific knowledge required to associate identified
measurements with relevant concepts.

MLLMs struggle to Solve Problems Entirely by Diagrams. The sce-
nario of Vision-only problems aligns more closely with real-world applications,
where capturing an image is often more convenient than transcribing the prob-
lem into text. However, by rendering the whole question within the diagram, the
mathematical problem-solving capacity of MLLMs is further diminished. This
experiment unveils the great challenge for MLLMs to simultaneously understand
mathematical conditions, questions, and figures from the visual input alone.

4 Conclusion

In this paper, we propose MathVerse for the visual mathematical problem-
solving capacity of MLLMs. We meticulously collect high-quality math problems
with diagrams spanning three primary subjects and twelve subfields. Given the
issues within current benchmarks, we transform each problem into six versions,
investigating how much MLLMs can interpret the visual math diagrams, and
propose a CoT evaluation strategy for finer-grained reasoning assessment. By
evaluating various closed-source and open-source models, MathVerse unveils
that most existing MLLMs struggle to accurately understand mathematical di-
agrams, and even attain higher results without visual input. This indicates the
potential of developing more advanced math-specific vision encoders for stronger
multi-modal mathematical reasoning.
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