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The supplementary material contains the following sections:

⋄ Sec. A provides details about the generation of the training dataset.
⋄ Sec. B presents additional qualitative results.
⋄ Sec. C brings additional ablation studies, notably regarding:

• Weights of perceptual and adversarial losses
• Architecture
• Data augmentation
• Iterations

⋄ Finally, Sec. D describes the metrics used for evaluation:
• Peak Signal-to-Noise Ratio (PSNR)
• Structural Similarity Index Measure (SSIM)
• Edge Restoration Quality Assessment (ERQA)
• Learned Perceptual Image Patch Similarity (LPIPS)

A Training dataset

To render the images from the meshes we use RayBender [4]. Because the dataset
created by LaMAR [13] contains large rendering artifacts we filter the data first
to remove renderings that are only artifact or not recognizable. We do this by
calculating a homography error in a similar way as SuperPoint [3]. While this
is not an accurate way of assessing whether the localization was successful, it
is enough to filter out the renderings with many artifacts. We estimate the ho-
mography based on SuperPoint [3] features with SuperGlue [12] matches. Ideally
the homography should be identity. The homography error uses the estimated
homography to remap the corners of the image. If the corners end up at their
original position, the homography is close to identity and the error is close to
zero. Using this method we filter out 32 % of the data.

B Additional visual results

We show additional results for the qualitative comparison in Fig. Sup. 1 and
Fig. Sup. 2. Fig. Sup. 3 shows further results of the validation of localization

https://orcid.org/0000-0001-6694-3560
https://orcid.org/0000-0002-3219-1783
https://orcid.org/0000-0003-2448-2318
https://orcid.org/0000-0001-8447-2344
https://boelukas.github.io/mariner/


2 L. Bösiger et al.

Table Sup. 1: Left - Encoders Results of using different encoders. Middle - De-
coders Results of replacing SAMs and DRAMs in the decoder. Right - Inference
time Impact of the number of iterations on the inference time.

Encoder CAB
PSNR SSIM

Learned 64 19.88 0.687
Learned 64 128 256 19.66 0.685

VGG 19.08 0.653

Decoder CAB
PSNR SSIM

SAM + DRAM 19.88 0.687
No SAM 19.73 0.685

No DRAM 19.71 0.676

iterations # Runtime (ms)

1 49.2
2 66.3
3 88.7
4 110.5

pseudo-ground-truth. Fig. Sup. 4 shows more enhanced synthetic trajectories
and Fig. Sup. 5 shows further results of enhanced NeRF renderings. Fig. Sup. 6
shows additional results on the 12 Scenes [16] dataset and Fig. Sup. 7 shows
additional results of enhancing greyscale renderings using references captured by
a HoloLens 2 device. Fig. Sup. 8 shows zero-shot prediction results for renderings
of the image-based rendering method IBRnet [17].

C Additional ablation studies

Further ablation studies are performed on the influence of the perceptual and
adversarial loss weights and the impact of different encoders and decoders. Fi-
nally, we provide further results extending the data-augmentation and iterative
refinement ablations.

Influence of the perceptual loss. Because the task of novel view enhance-
ment is different from RefSR, we investigate the effectiveness of the commonly
used perceptual loss on our task. Fig. Sup. 10 λper = 0 shows that without
the perceptual loss, fine geometric structure like the texture of the box are not
correctly transferred. Increasing the weight to λper = 0.02 and λper = 0.1, we
observe increased texture details. A higher perceptual weight λper = 0.5 leads
to grid like artifacts [8] which are more visible in image regions where the cor-
respondence matching is less confident. The extreme case can be observed for
λMASA

per using the same perceptual loss as MASA-SR [11]. Fig. Sup. 10 shows
that λper = 0.1 increases the details optimally while introducing minimal arti-
facts which is also confirmed numerically in Fig. Sup. 9a.

Influence of the adversarial loss. Using the perceptual loss can lead to grid-
like artifacts [8]. To remove those and make the images more visually pleasing [2,
11] we use the adversarial loss. Fig. Sup. 11 shows the impact of different weights
for the loss. λadv = 0 contains the artifacts from the perceptual loss. λadv = 0.005
removes those artifacts completely but introduces high frequency details not
present in the reference. Fig. Sup. 9b shows that also the scores decrease with
higher adversarial loss weight. We found that with λadv = 0.001 the perceptual
loss artifacts are removed while minimal new details are wrongly introduced.

Encoder. An important part of the model performance is whether the matching
between rendering and real image is successful. This matching is performed on
the features from the encoder. MASA-SR [11] uses features trained end-to-end
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with the super resolution task which has the advantage that the features are
tailored for the task. Another option is to use pre-trained features [10,20]. If we
use for example VGG features, we can leverage that those models were trained on
a much larger dataset and the features potentially generalize better. Fig. Sup. 12
shows an overview over alternative encoders. The first encoder is trained end-
to-end like ours but increases the feature dimension with each stage. The second
one uses a pre-trained VGG16 [14] encoder where we use the relu1_1, relu2_2
and relu3_3 features. Tab. Sup. 1 validates the choice of the encoder used in
our architecture.

Decoder. We show that the SAM and DRAM blocks are also applicable for the
task of novel view enhancement. For this we train two models, where in the first
one the decoder has no SAMs. In the second model, the DRAMs are replaced
by simply concatenating the features and merging them using a convolution.
Tab. Sup. 1 shows that the scores are the best using both DRAMs and SAMs.

Data augmentation. We show the visual impact of the random reference
level data-augmentation in Fig. Sup. 13. The impact on the visual results of the
mesh quality data-augmentation is shown in Fig. Sup. 14. This leads to increased
robustness against meshes of various qualities, as v visualized in Fig. Sup. 15.

Iterations. We show the effect on the PSNR and SSIM scores of different
numbers of iterations in the iterative refinement process in Fig. Sup. 16. The
impact on the inference time is shown in Tab. Sup. 1.

D Metrics

We provide the definitions of the metrics used to evaluate our model. The metrics
are calculated between the ground truth image IGT and the enhanced rendering
IER.

Peak Signal-to-Noise Ratio (PSNR). The PSNR [5] is defined as

PSNR(IGT, IER) = 10log10

(
2552

MSE(IGT, IER)

)
MSE(IGT, IER) =

1

HW

H∑
i=1

W∑
j=1

(IGT(i, j)− IER(i, j))
2

(1)

where the MSE is the mean squared error.

Structural Similarity Index Measure (SSIM). The SSIM [18] is calculated
on two equally sized windows x ⊂ IGT and y ⊂ IER

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2)
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where c1 = (0.01 · 255)2 and c2 = (0.03 · 255)2. The formula is based on three
components that measure the difference between x and y in terms of luminace,
constrast and structure.

Edge Restoration Quality Assessment (ERQA). The ERQA [6] finds
edges in IGT and IER using the Canny algorithm [1]. Those edges are compared
using the F1 score

precision =
TP

TP + FP
, recall =

TP
TP + FN

(3)

F1 = 2
precision · recall
precision + recall

(4)

where TP (True Positive) are the number of pixels detected as edge in both IGT
and IER. FP (False Positive) is the number of pixels detected only in IER, FN
(False Negative) are pixels only detected in IGT. To account for networks that
produce small edge shifts either globally over the entire image or locally, ERQA
builds in compensations to match the pixels of those edges before calculating
the F1 score.

Learned Perceptual Image Patch Similarity (LPIPS). The LPIPS [19]
uses deep neural networks as feature extractor and trains a similarity predictor
network based on the feature difference of the images at several layers.

LPIPS(IGT, IER) =
∑
l

Gl

 1

HlWl

Hl∑
i

Wl∑
j

∥wl ⊙ (ϕl(IGT)i,j − ϕl(IER)i,j∥22)


(5)

where ϕl denotes the output of layer l of the pretrained AlexNet [9]. LPIPS
uses layers conv_1 to conv_5. Gl is the trained prediction network for layer l, ⊙
stands for scaling the activations channel-wise by a vector wl.
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Reference Rendering MASA DATSR NNST MaRINeR GT

Fig. Sup. 1: Qualitative comparison – 1. Additional results of comparing
MASA [11], DATSR [2] (RefSR) and NNST [7] (ST) with MaRINeR on the task
of novel view enhancement.
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Reference Rendering MASA DATSR NNST MaRINeR GT

Fig. Sup. 2: Qualitative comparison – 2. Additional results of comparing
MASA [11], DATSR [2] (RefSR) and NNST [7] (ST) with MaRINeR on the task
of novel view enhancement.
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Fig. Sup. 3: Further homography estimation results. Using enhanced renderings
of MARINeR, estimating a homography to the aligned source image is more accurate
and can be used to automate manual sanity checks in the LaMAR [13] pipeline.
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Fig. Sup. 4: Enhancing synthetic trajectories with nearby localized images.
Additional results showing that because of the increased realism, the results from
MaRINeR can extend the current dataset without introducing a gap between syn-
thetic and human recorded trajectories.
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Fig. Sup. 5: Additional NeRF postprocessing results. Training a nerfacto [15]
model on the Floating tree and Egypt data. We use the smallest nerfacto model and
the result contains artifacts which our model can successfully remove.
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Reference Rendering Result GT

Fig. Sup. 6: 12 Scenes results. Evaluating the model on the apartment 1 kitchen
and living scenes of the 12 Scenes [16] dataset shows that MaRINeR also enhances
renderings of 3D reconstructions created by a different algorithm than the one used by
LaMAR [13].
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Reference Rendering Result GT

Fig. Sup. 7: HoloLens 2 results. Enhancing greyscale renderings using references
recorded by a HoloLens 2 device.
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Reference Rendering Result GT

Fig. Sup. 8: Enhancing novel view renderings created by the image-based rendering
method IBRNet [17] using our model without retraining.



12 L. Bösiger et al.

(a) Perceptual loss weight influence (b) Adversarial loss weight influence

Fig. Sup. 9: Influence of the loss weights. The results of our experiments finding
the optimal weights for a the perceptual loss and b the adversarial loss.
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Fig. Sup. 10: Impact of the perceptual loss. Increased weight enhances details
and the visual quality but also introduces perceptual loss specific grid-like artifacts.
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Fig. Sup. 11: Impact of the adversarial loss. Increased weight removes the per-
ceptual loss artifacts and keeps the underlying texture. Increasing the weight too much
leads to the introduction of hallucinated details not present in the reference.
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Fig. Sup. 12: Architecture of alternative encoders. We validate the choice of
our encoder by comparing it against an end-to-end trained encoder with larger feature
channels and an encoder using pre-trained VGG16 [14] features.
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Fig. Sup. 13: Ref. level data augmentation. Impact of using random close-by
images as reference instead of only the closest one. While the model performs similar
for ref. level 1, the correspondence matching fails for ref. level 7 leading to worse results.
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Reference Rendering No Augment. Augment.
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Fig. Sup. 14: Mesh quality data-augmentation Comparison of the model with
and without augmenting the data with renderings from a down-sampled mesh. While
for a mesh size of 100% the results are visually similar, for the mesh size of 10% the non
augmented model fails to find correspondences and the result lacks the details from
the reference.
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Fig. Sup. 15: Results of our model on low quality meshes. The visual quality
of the results stays high even if the mesh size is reduced to 75% and 25% of the original
mesh triangles.
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Fig. Sup. 16: Impact of the number of iterations. Increasing the number of
iterations leads to better results. The largest improvement can be seen between 1 and
2 iterations.
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