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Fig. 1: We propose Mesh2NeRF, a novel method for extracting ground truth radi-
ance fields directly from 3D textured meshes by incorporating mesh geometry, texture,
and environment lighting information. Mesh2NeRF serves as direct 3D supervision for
neural radiance fields, offering a comprehensive approach to leveraging mesh data for
improving novel view synthesis performance. Mesh2NeRF can function as supervision
for generative models during training on mesh collections, advancing various 3D gen-
eration tasks, including unconditional and conditional generation.

Abstract. We present Mesh2NeRF, an approach to derive ground-truth
radiance fields from textured meshes for 3D generation tasks. Many 3D
generative approaches represent 3D scenes as radiance fields for train-
ing. Their ground-truth radiance fields are usually fitted from multi-view
renderings from a large-scale synthetic 3D dataset, which often results
in artifacts due to occlusions or under-fitting issues. In Mesh2NeRF,
we propose an analytic solution to directly obtain ground-truth radi-
ance fields from 3D meshes, characterizing the density field with an oc-
cupancy function featuring a defined surface thickness, and determin-
ing view-dependent color through a reflection function considering both
the mesh and environment lighting. Mesh2NeRF extracts accurate ra-
diance fields which provides direct supervision for training generative
NeRFs and single scene representation. We validate the effectiveness of
Mesh2NeRF across various tasks, achieving a noteworthy 3.12dB im-
provement in PSNR for view synthesis in single scene representation on
the ABO dataset, a 0.69 PSNR enhancement in the single-view condi-
tional generation of ShapeNet Cars, and notably improved mesh extrac-
tion from NeRF in the unconditional generation of Objaverse Mugs.
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1 Introduction

3D virtual content generation has garnered increased attention within the do-
mains of computer vision and graphics. This surge is fueled by advancements in
large-scale datasets [11,19,21–23] and generative models [9,10,45,50,51], foster-
ing significant growth in the 3D asset creation industry. Classical 3D represen-
tations, including point clouds, meshes, voxel grids, SDF, etc., have seamlessly
integrated into generative models, yielding promising results in generating 3D
shapes [30, 34, 46, 53, 64]. Radiance fields have emerged as a powerful learning
representation for 3D reconstruction and generation, as evidenced by their effec-
tiveness in various studies [5, 15,28,31,38,39,55,62].

Radiance fields possess significant potential as high-quality 3D generative
representations, but ground truth radiance fields are required as training sam-
ples for generative models. However, obtaining GT radiance fields is extremely
challenging. To overcome the lack of direct 3D radiance field supervision, some
recent approaches utilize 2D generative models [8, 43, 50, 66] to generate multi-
view posed images [27, 56]. Subsequently, these 2D generations are fitted into
NeRFs or 4D grids (RGB + opacity) to obtain textured 3D outputs [32, 33].
Nevertheless, these methods rely on the quality and consistency of upstream 2D
multi-view generation, posing challenges in ensuring high-quality 3D outputs.

Some methods directly train a 3D generative model on native 3D data [18,
35,41,52], leveraging inherent 3D supervision for natural view consistency. How-
ever, these methods commonly encounter challenges in jointly recovering geome-
try and texture due to the diversity of shape and appearance distributions. Most
approaches focus on generating geometry [16,42] and then proceed through ad-
ditional stages to obtain appearance [14]. Recent prevalent approaches involve
using 2D supervision, which supervises differentiable renderings from 3D genera-
tions using the GT mesh renderings from 3D meshes. For example, [15,39] learn
NeRF generation from mesh collections like ShapeNet. However, they require
rendering dense multi-views from each mesh, learning respective shape NeRF
representation for each training sample from the rendered images, and training
the generative diffusion model to model the distribution of NeRF representa-
tions for all samples. Despite achieving reasonable results, we argue that the
rendering process is redundant and also introduces information loss. In addition,
relying on 2D supervision from multi-view renderings also introduce inaccurate
reconnstructions, where neural volume rendering is employed to integrate ray
colors and calculate rendering loss from pixel colors. We contend that this loss
function offers weak supervision, as each pixel color is tasked with supervising
the learning of all points’ density and color in a ray. Particularly when faced with
few or imbalanced view observations, this methodology struggles to synthesize
an accurate radiance field.

In this work, we aim to synthesize textured shapes while inheriting the ad-
vantages of 3D mesh data by denoising the radiance field with guidance from
ray color and density values extracted from 3D meshes. Our method employs
individual supervision for each ray point, overseeing both density and color. To
facilitate this, we introduce a module named Mesh2NeRF, designed to extract
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theoretically GT sampled ray points from meshes. By utilizing this module to
supervise a generative model, such as a modern triplane-based NeRF Diffusion
model [15], our approach exhibits superior performance in both unconditional
and conditional 3D textured shape generation tasks. In summary, our contribu-
tions are:

1. We propose Mesh2NeRF, a theoretical derivation to directly create a radi-
ance field from mesh data. Employing Mesh2NeRF to convert a mesh to a
radiance field eliminates the need for rendering multi-view images, avoiding
typical imperfections in multi-view reconstruction.

2. We show how Mesh2NeRF can be employed as direct supervision in training
generative models with 3D data, especially in applications such as conditional
and unconditional NeRF generation.

2 Related Work

NeRF as 3D representation. Introduced by [38] in 2020, NeRF has become
a prominent method for representing scenes. Advances in works like cone trac-
ing with positional encoding [6] and proposal multi-layer perceptron (MLP)
[7] have enhanced neural representation and rendering across various scenar-
ios [7, 37, 37, 44, 60]. While NeRF has made substantial progress and unlocked
numerous applications, there remain significant differences between its repre-
sentation and the mesh representation widely utilized in traditional computer
graphics. Bridging the gap between these two representations is a challenge,
and existing methods have explored incorporating meshes into the rendering
process to expedite the rendering [58, 65]. NeRF2Mesh [58] focuses on recon-
structing surface meshes from multi-view images for applications such as scene
editing and model composition. We posit that leveraging existing mesh collec-
tions [11,19,22,23], often featuring high-quality data crafted by artists [1,2], can
enhance NeRF/3D applications. To achieve this, we propose Mesh2NeRF to di-
rectly obtain a radiance field from a textured 3D mesh. By using Mesh2NeRF as
direct mesh supervision in NeRF tasks, we aim to harness mesh data to enhance
applications utilizing NeRF as the 3D representation.
NeRF supervision. The original NeRF is trained using a pixel loss, where rays
sampled from the NeRF are integrated to colors supervised by ground-truth
pixel colors. However, this approach requires substantial multi-view coverage,
as each pixel color is utilized to supervise all 3D points sampled along a ray
emitted from the pixel. To mitigate ambiguity, various methods introduce depth
priors as additional supervision to inform networks about scene surfaces [24,49,
63]. In addition to addressing ambiguity, the inference of scene surfaces is often
employed for ray termination to prevent further point sampling [48]. In contrast,
our approach, Mesh2NeRF, accepts textured meshes as input and employs an
analytical solution to generate radiance fields. This derived radiance field proves
effective in various NeRF tasks, encompassing the fitting of single scenes and
the training of NeRF generative models.
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NeRF generation with diffusion models. Recently, NeRF representations
have gained popularity in shape generation, especially within diffusion-based
methods [20]. In the realm of diffusion models for 3D shape generation, ap-
proaches can be broadly categorized into two groups: those extending 2D diffu-
sion priors to the 3D domain [4,29,36,59,61], and those directly applying diffusion
processes to 3D data [17, 18, 39, 52]. In essence, 2D-lifted diffusion methods in-
herit the richness of large 2D diffusion models but may grapple with issues of
view consistency, while 3D native data diffusion methods exhibit complementary
characteristics. Several diffusion models learn priors from synthetic objects ei-
ther by learning diffusion weights on pre-calculated NeRF representations [39] or
by jointly optimizing diffusion weights with each object’s NeRF [15]. However,
these approaches heavily rely on multi-view observations rendered from meshes.
In contrast, our Mesh2NeRF directly derives analytically correct colors and den-
sity values for ray points from meshes. These serve as robust 3D supervision in
NeRF generation diffusion models.

3 Method

We provide a brief overview of volume rendering and NeRF in Section 3.1. Fol-
lowing that, we delve into how Mesh2NeRF directly derives radiance field repre-
sentation from textured meshes in Section 3.2 and elaborate on the application
of Mesh2NeRF as direct supervision in NeRFs in Section 3.3. In Section 3.4, we
illustrate the application of Mesh2NeRF in NeRF generation diffusion models.

3.1 Volume Rendering and NeRFs Revisited

NeRFs model a 3D scene using a neural network to represent the radiance field.
This field takes a 3D position x = (x, y, z) and viewing direction d = (θ, ϕ),
providing the volume density σ(x) ∈ R+

0 and RGB color c(x,d) at that point.
To render the color of a pixel in a target camera view, the 3D position o of the
camera center and the camera viewing direction d are used to construct the ray
y = o + td, with the ray parameter t ∈ R+

0 . The ray is sampled at N points
yi with parameter values ti, where the volume density and color are σi = σ(yi)
and ci = c(yi,d). The pixel color is then approximated by the formula from the
original NeRF paper [38,57]:

Ĉ(y) =

N∑
i=1

Ti(1− exp(−σiδi))ci (1)

Here,

Ti = exp

−
i−1∑
j=1

σjδj

 (2)

is the accumulated transmittance along the ray y to the sample i and δi =
ti+1 − ti is the distance between adjacent samples.
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Fig. 2: Our method, illustrated above, constructs a GT radiance field from a textured
mesh. Using a surface-based occupancy function with a distance threshold, we model
the scene’s density field. View-dependent color is then modeled, considering view direc-
tion, surface geometry, and light direction. Integrating samples along the camera ray
enables accurate volume rendering from our defined radiance field. The bottom part
showcases Mesh2NeRF as direct 3D supervision for NeRF tasks, where the density and
color values of each ray sample supervise NeRF ray samples during optimization.

During NeRF training, the MLP’s weights, encoding scene characteristics,
are optimized. The training process aims to optimize MLP weights to match
the rendered and GT colors of the rays. With comprehensive scene coverage in
the input images, this straightforward process yields MLP weights that precisely
represent the 3D volumetric density and appearance of the scene. For novel view
synthesis, a corresponding image can be rendered from a given camera pose.

3.2 Radiance Field from Textured Mesh

In the process of constructing a radiance field from a given textured mesh in con-
junction with environmental lighting, our objective is to approximate the ideal
density field and color field, collectively representing a 3D mesh as a continuous
function in R3. In the ideal scenario, the color along each ray is constant and
equal to the color of the hitting point on the mesh. The density, on the other
hand, resembles a Dirac delta function, implying that only the mesh surface po-
sitions have infinite density values, while the density is zero elsewhere. However,
such a density distribution is impractical for training a neural network or for
discrete volume rendering with a finite number of samples. We therefore adapt
our ideal density and color fields to make them suitable for network training and
discrete volume rendering.
Density field of mesh surfaces. Discrete volume rendering is based on Eq. 1,
which assumes the density σ and color c are piecewise constant, as demonstrated



6 Y. Chen et al.

in [57]. We find that the density can be modeled by the top hat functions with
a parameter n:

∆n(t) =

{
n
2 , if |t| < 1

n

0, otherwise
(3)

These functions provide a density σ(t) which is n∆n(t) at every step of the limit
process limn→∞ of a Dirac delta function, and are thus piece-wise constant.

The height of the density σ(t) near the mesh is n2/2 for the top hat functions,
which grows indefinitely during the limit process. However, very large numbers
are not adequate for a representation with a neural network. Therefore, we use
the alpha values

αi = 1− exp(−σiδi) (4)

and reformulate Eqs. 1 and 2 to

Ĉ(y) =

N∑
i=1

Tiαici (5)

with the accumulated transmittance:

Ti =

i−1∏
j=1

(1− αj) (6)

The alpha value αi denotes how much light is contributed by sample i. We refer
to the original NeRF paper [57] for more details. The alpha value changes from
0 to 1 when touching the surface and back to 0 after passing through it. Hence,
for large n, the density n∆n(t) can approximately be represented by:

α =

{
1, if d < h

0, otherwise
(7)

where α is a function of distance to mesh surface d; h is the half of the surface
thickness.

Our key insight is that we can use occupancy to represent the alpha value
α. From Eq. 5, we can get the conclusion that Ĉ(y) = αimcim , where im is the
first sampled point intersecting with the surface, αim = 1, and cim is the color
of intersection point from the texture mesh.
Modeling the color field. In Mesh2NeRF, we represent the color of sampled
points along each ray as a constant using a BRDF model, e.g., we use the Phong
model in our experiments while any BRDF can be applied. For any sampled
point on the ray with direction v, its color is defined as the color ci of the first
hitting point of the ray and mesh surface. In Fig. 3, we qualitatively compare
volume rendering outcomes between our defined Mesh2NeRF fields (obtained
through Mesh2NeRF analytic solution) with ground truth renderings. The lat-
ter corresponds to the mesh rendering conducted under identical lighting and
shading conditions. Our method generates accurate, high-quality view-dependent
renderings, showcasing the precision of our discretely defined density and color
distribution along the ray.
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Fig. 3: Volume renderings from the defined radiance fields of Mesh2NeRF analytic
solution. Our rendering results are very close to the ground truth, indicating that our
defined radiance fields can serve as an effective ground truth representation for NeRFs.

3.3 Mesh2NeRF as Supervision in NeRFs

Our approach enables the generation of density and color attributes for each
sampled point along the rays, allowing direct supervision of these values in the
outputs of NeRF MLP. For predicted density σ̂ and color ĉi along the ray, alpha
α̂i can be computed using Eq. 4. The overall optimization loss term is composed
of alpha and color terms:

Lalpha =

N∑
i=1

|α̂i − αi|2 (8)

Lcolor =

N∑
i=1

∥ĉi − ci∥22 (9)

Optionally, the overall optimization loss can include a term, Lintegral , accounting
for the difference in the ray color integral:

Lintegral =

∥∥∥∥∥∥
N∑
i=1

α̂iĉi

i−1∏
j=1

(1−α̂j)−
N∑
i=1

αici

i−1∏
j=1

(1−αj)

∥∥∥∥∥∥
2

2

(10)

The final optimization loss term is given by:

L = Lalpha + wcolorLcolor + wintegralLintegral (11)

where wcolor and wintegral are weighting terms.
Space sampling for neural radiance field optimization. Mesh2NeRF offers
robust supervision for a neural radiance field generated from a mesh. As depicted
in the lower part of Fig. 2, points are sampled along a ray and fed to an MLP
to predict density and color (like NeRFs). We emulate a virtual camera in unit
spherical to define ray origins and directions similar to NeRFs but use ray casting
to compute intersections with the geometry. For efficient sampling of the fields,
we implement queries on top of the bounding volume hierarchy acceleration
structures of the Embree library [3]. This information optimizes the sampling
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of points inside the volume. For rays intersecting the surface, we implement
stratified sampling of points along the ray in both the empty scene space and
within a narrow band at a distance h to the surface. If a ray does not intersect
the mesh, we randomly sample points in the domain along the ray. Mesh2NeRF
directly supervises the MLPs at each sampled point using the density and color
fields generated from the mesh through the loss terms Lalpha and Lcolor .

3.4 Mesh2NeRF in NeRF Generation Tasks

To facilitate 3D generation tasks, we advocate for the incorporation of Mesh2NeRF
into the NeRF generation framework. We build on our generative framework
based on the single-stage diffusion NeRF model [15], which combines a triplane
NeRF auto-decoder with a triplane latent diffusion model. The pivotal innova-
tion lies in replacing the rendering loss, which relies on multi-view observations
rendered from meshes, with our direct supervision.
SSDNeRF revisited. In the context of multiple scene observations, generaliz-
able multi-scene NeRFs can be trained by optimizing per-scene codes and shared
parameters, as proposed in [13]. This optimization is achieved by minimizing the
rendering loss Lrend associated with each observation image. Consequently, the
model is trained as an auto-decoder [47], where each scene code is interpreted
as a latent code. To enhance the expressiveness of latent representations, a la-
tent diffusion model (LDM) is employed to learn the prior distribution in the
latent space. The LDM introduces Gaussian perturbations into the code at the
diffusion time step. Subsequently, a denoising network with trainable weights is
utilized to remove noise during the diffusion stage, predicting a denoised code.
The LDM is trained using a simplified L2 denoising loss Ldiff . In the SSDNeRF
framework, the training objective aims to minimize the variational upper bound
on the negative log-likelihood (NLL) of observed data:

Lssdnerf = wrendLrend + wdiffLdiff (12)

Here, the scene codes, prior parameters, and NeRF decoder parameters are
jointly optimized, with wrend and wdiff serving as weighting factors for the ren-
dering and diffusion losses, respectively.

With trained diffusion prior, a variety of solvers (such as DDIM [54]) can be
used to recursively denoise a random Gaussian noise, until reaching the denoised
state in the unconditional sampling process. When the generation is conditioned,
e.g., from single-view or sparse-view observations, the sampling process is guided
by the gradients of rendering loss from known observation. For more details about
the image-guided sampling and fine-tuning, we refer to SSDNeRF [15].
Supervision with Mesh2NeRF. When mesh data is directly used, one can
replace the rendering loss Lrend to Mesh2NeRF loss as Eq. 11 during the training
process. In the conditional generation stage, since the surface distribution is not
available from observation conditions, we use the rendering loss Lrend to compare
standard volume rendering with the observation pixel to guide the generation.
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Fig. 4: Comparison of single scene fitting for scenes from Poly Haven and Sketchfab.
For each visualized scene, we present two renderings of test views by each method.
Our results showcase higher accuracy and a superior ability to capture finer details in
renderings when compared to the baseline methods (Mesh2NeRF TensoRF vs. TensoRF
and Mesh2NeRF NGP vs. Instant NGP).

4 Results

We illustrate that our direct supervision of radiance fields from meshes signif-
icantly improves performance in NeRF optimization and generation tasks. We
showcase results of a single scene fitting using Mesh2NeRF, comparing it with
NeRF pipelines in Section 4.1. Importantly, we then demonstrate the utility of
Mesh2NeRF in diverse 3D generation tasks in Section 4.2 and Section 4.3.

4.1 Single Scene Fitting

This section compares Mesh2NeRF with traditional NeRF methods in repre-
senting a single scene via a neural network. Mesh2NeRF directly supervises the
neural network from mesh data, while traditional NeRFs use rendering technolo-
gies and then fuses information from renderings to the radiance field.

We evaluate our method on scenes from Amazon Berkeley Objects (ABO)
[19], Poly Haven Models [1] and Sketchfab Scenes [2]. The ABO dataset con-
tains twelve realistic 3D models of household objects. Each object is rendered
at 512×512 pixels from viewpoints sampled on a sphere, covering the object’s
surface area (90 views as input and 72 for testing). We also show results on six
hyper-real models from the Poly Haven library, which consists of quality content
designed by artists. Each scene is rendered at 512×512 with 90 input and 120
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Table 1: View synthesis results for fitting a single scene on ABO and Poly Haven
datasets. Our comparison involves NeRF methods and Mesh2NeRF, utilizing identical
network architectures while differing in supervision style.

Method ABO Dataset Poly Haven Dataset

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 25.09 0.882 0.137 21.24 0.689 0.422
TensoRF 31.33 0.944 0.032 23.32 0.748 0.260
Instant NGP 30.16 0.928 0.039 24.39 0.779 0.185
Mesh2NeRF NeRF 32.40 0.942 0.044 22.75 0.710 0.296
Mesh2NeRF TensoRF 32.00 0.957 0.024 23.97 0.761 0.220
Mesh2NeRF NGP 33.28 0.969 0.018 25.30 0.825 0.129

test views. We use the Entrée du château des Bois Francs scene from Sketchfab
to evaluate large scene-scale data. The used Sketchfab scene is also rendered at
512×512 pixels with 90 input views and 120 test views. For Mesh2NeRF, we
use the textured mesh from both sets by setting a fixed point light. We evaluate
our approach with three different encodings and parametric data structures for
storing trainable feature embeddings, i.e., the network part of NeRFF [38], Ten-
soRF [12], and Instant NGP [40] with our Mesh2NeRF direct supervision using
the corresponding mesh. We denote these three methods by Mesh2NeRF NeRF,
Mesh2NeRF TensoRF, and Mesh2NeRF NGP, respectively.

In Table 1, we report mean PSNR/SSIM (higher is better) and LPIPS (lower
is better) for objects in both the ABO and Poly Haven datasets. Our method
consistently outperforms prior work on both datasets. For the ABO dataset, all
three variants of our method surpass baseline optimization across all evalua-
tion metrics. Mesh2NeRF NGP, employing Instant NGP style multi-resolution
hash table encodings, achieves the best performance. Compared to the raw In-
stant NGP version, Mesh2NeRF NGP exhibits notable improvements (+3.12
PSNR, +0.041 SSIM, and −0.021 LPIPS). Similarly, on the Poly Haven dataset,
Mesh2NeRF NGP delivers the best results.

We present qualitative results in Fig. 4, illustrating the superiority of our
method over NeRF baselines in representing single scenes on challenging Coffee
Cart from Poly Haven and Entrée du château des Bois Francs from Sketchfab.
Mesh2NeRF TensoRF supasses the original TensoRF, indicating that Mesh2NeRF
supervision contributes to the neural network’s ability to learn accurate scene
representation. Mesh2NeRF NGP also outperforms Instant NGP, exhibiting
fewer artifacts and providing more precise renderings. For additional implemen-
tation details, results and analysis, please refer to the supplemental material.

4.2 Conditional Generation

This section presents experimental results of NeRF generation conditioned on
images of unseen objects from the ShapeNet Cars and Chairs [11], as well as
the KITTI Cars [25]. These datasets pose unique challenges, with the ShapeNet
Cars set featuring distinct textures, the ShapeNet Chair set exhibiting diverse



Mesh2NeRF 11

Fig. 5: Qualitative comparison of NeRF generation conditioned on single-view for un-
seen objects in ShapeNet Cars and Chairs between SSDNeRF and our method. Our
approach enables more accurate novel views.

shapes, and KITTI Cars representing real-world inference data with a substantial
domain gap when compared to the training data of the generative model.
Implementation information. We adopt SSDNeRF [15] as the framework for
sparse-view NeRF reconstruction tasks since it achieves state-of-the-art NeRF
generation performance. In its single-stage training, SSDNeRF jointly learns
triplane features of individual scenes, a shared NeRF decoder, and a triplane
diffusion prior. The optimization involves a pixel loss from known views. For
Ours, we replace the pixel loss with Mesh2NeRF supervision (Eq. 11) from the
train set meshes. We generate training data for ShapeNet Cars and Chairs using
the same lighting and mesh processes as in our Mesh2NeRF setup. SSDNeRF
is trained using the official implementation; our model is trained with the same
viewpoints as in the SSDNeRF experiments, without additional ray sampling,
ensuring a fair comparison. Our evaluation primarily centers on assessing the
quality of novel view synthesis based on previously unseen images. PSNR, SSIM,
and LPIPS are evaluated to measure the image quality.
Comparative evaluation. In Table 2, a comprehensive comparison between
our method and the state-of-the-art SSDNeRF is provided. Our method demon-
strates overall superiority in conditional NeRF reconstruction tasks when pro-
vided with sparse-view conditions (ranging from one to four views) for both the
Car and Chair categories. Fig. 5 visually illustrates the impact of Mesh2NeRF
supervision on the accuracy of NeRFs in the context of single-view condition
generation. Notably, our method outperforms SSDNeRF, especially when deal-
ing with objects that possess unconventional forms (e.g., the first car with a
roof of the same color as the background, and the third red car exhibiting input
noise). SSDNeRF struggles in such scenarios, yielding unreasonable geometries.
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Fig. 6: Qualitatively comparison of NeRF generation conditioned on two-view for un-
seen objects in ShapeNet Cars and Chairs. Three novel views are displayed for each
two-view input. Our approach enables more accurate novel views.

Table 2: Conditional NeRF generation results on ShapeNet Cars and Chairs.

Cars 1-view Cars 2-view Cars 3-view Cars 4-view

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SSDNeRF 21.09 0.881 0.104 24.67 0.926 0.071 25.71 0.934 0.069 26.54 0.939 0.067
Ours 21.78 0.893 0.101 24.98 0.932 0.072 25.89 0.942 0.066 26.51 0.945 0.062

Chairs 1-view Chairs 2-view Chairs 3-view Chairs 4-view

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SSDNeRF 19.05 0.853 0.133 19.65 0.859 0.136 20.42 0.863 0.149 21.84 0.884 0.134
Ours 19.62 0.859 0.128 22.22 0.888 0.112 23.03 0.900 0.116 22.68 0.907 0.109

Qualitative comparisons in the setting of 2-view conditions are presented in both
Fig. 6. In these scenarios, our approach consistently outshines SSDNeRF, pro-
ducing superior results across various instances.

Single-view NeRF generation from real images. We also conduct a com-
parison with SSDNeRF using real KITTI car data for conditional generation
based on a single-view input. This task poses a challenge because the gener-
ative model is trained on synthetic ShapeNet cars, resulting in a significant
domain gap. The input images are obtained from the KITTI 3D object detec-
tion dataset [25] using annotated 3D bounding boxes. To align them with the
ShapeNet Cars dataset, we utilize provided bounding box dimensions and poses.
Segmentation masks remove the background [26]. Images are cropped and re-
sized to 128×128. The processed image conditions our generative model, guiding
the generation of a radiance field for rendering novel views around the cars. In
Fig. 7, we show qualitative examples of novel view synthesis. Both SSDNeRF
and our model successfully reconstruct the car’s shape in most cases. However,
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Fig. 7: Qualitative comparison of novel view synthesis on in-the-wild car images from
the KITTI dataset. Four novel views are displayed for each single-view input. Our
approach enables more reasonable novel views.

SSDNeRF fails in the last row sample due to color similarity between the car
and the background. Our model excels in reconstructing the radiance field of
the car in this challenging scenario. Regarding the generated car NeRFs, our ap-
proach produces more accurate textures with improved global consistency and
better correspondence to the input image. In contrast, SSDNeRF tends to gen-
erate textures only in the vicinity of the observation area, leaving other regions
textureless or with incorrect colors. Our results exhibit greater realism and co-
herence across the entire scene, showcasing the superior generalization capability
of our model, especially in the face of substantial domain gaps.

4.3 Unconditional Radiance Field Synthesis

We conduct evaluation for unconditional generation using the Objaverse Mugs
collection [23], which consists of 153 mug models. The Mugs dataset presents a
challenge in generating shape geometry and realistic textures due to the limited
training samples. The baseline SSDNeRF is trained on rendered images from
50 views of each mesh, and Mesh2NeRF is trained on meshes with the same
viewpoints. Both models underwent training for 100,000 iterations.

As shown in Fig. 8, both SSDNeRF and Mesh2NeRF generate reasonable
NeRFs in the rendered images. However, when extracting meshes from NeRFs of
SSDNeRF, inaccuracies are evident; the geometries of its unconditional genera-
tion do not faithfully represent the real geometry of the training samples or real
data. Notably, traditional NeRF supervision struggles to enable the generative
model to capture precise geometric details, such as whether a cup is sealed. In
contrast, Mesh2NeRF synthesizes diverse and realistic geometries corresponding
to the rendered images. This underscores the robustness of Mesh2NeRF super-
vision, proving instrumental in generating physically plausible 3D content.
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Fig. 8: Qualitative comparison between unconditional generative models training on
Objaverse Mugs. We present two renderings and extracted mesh from each generated
NeRF. Our approach exhibits a notable advantage in reasonable geometry, particularly
for shapes that suffer from self-occlusions when trained only with image supervision.

4.4 Limitations

While Mesh2NeRF effectively employs direct NeRF supervision for NeRF rep-
resentation and generation tasks, several limitations persist. Similar to NeRF,
which bakes lighting information into appearance, we model the result of the
Phong lighting model in the generated radiance field for compatibility with ex-
isting approaches. Another limitation stems from the ray sampling employed by
baselines due to the dependence on rendered images. Hence, future work should
delve into more efficient sampling techniques that leverage ground truth geome-
try and appearance, bypassing the need for sampling schemes relying on virtual
cameras. Furthermore, acknowledging the diversity of mesh data, the application
of Mesh2NeRF to generative models can span across various categories of mesh
data, contributing to the development of a more universal and robust prior.

5 Conclusion

We have introduced Mesh2NeRF, a new approach for directly converting tex-
tured mesh into radiance fields. By leveraging surface-based density and view-
dependent color modeling, our method ensures faithful representation of com-
plex scenes. Employing Mesh2NeRF as direct 3D supervision for NeRF opti-
mization yields superior performance, enhancing accuracy and detail in view
synthesis across diverse hyper-real scenes. Importantly, the versatility of our
method extends to various generalizable NeRF tasks, encompassing both con-
ditional and unconditional NeRF generation. When combined with available
mesh data, Mesh2NeRF mitigates traditional NeRF supervision shortcomings,
leading to enhanced overall performance on synthetic datasets and real-world
applications. Mesh2NeRF is applicable to various NeRF representations, such
as frequency encoding (NeRF), hash encoding (NGP), tensorial (TensoRF), and
triplane (SSDNeRF), consistently improving respective tasks. We believe that
this work contributes valuable insights to the integration of mesh and NeRF
representations, paving the way for new possibilities in 3D content generation.
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