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Abstract. While rendering and animation of photorealistic 3D human
body models have matured and reached an impressive quality over the
past years, modeling the spatial audio associated with such full body
models has been largely ignored so far. In this work, we present a frame-
work that allows for high-quality spatial audio generation, capable of
rendering the full 3D soundfield generated by a human body, includ-
ing speech, footsteps, hand-body interactions, and others. Given a basic
audio-visual representation of the body in form of 3D body pose and
audio from a head-mounted microphone, we demonstrate that we can
render the full acoustic scene at any point in 3D space efficiently and
accurately. To enable near-field and realtime rendering of sound, we bor-
row the idea of volumetric primitives from graphical neural rendering and
transfer them into the acoustic domain. Our acoustic primitives result in
an order of magnitude smaller soundfield representations and overcome
deficiencies in near-field rendering compared to previous approaches. Our
project page: https://wikichao.github.io/Acoustic-Primitives/.
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1 Introduction

Learning, rendering, and animating 3D human body representations has been
a long standing research area with applications in gaming, movies, and more
recently also AR/VR. MetaHumans [1] and Codec Avatars [3] provide highly
realistic models and advances in neural rendering have pushed the visual quality
to new frontiers [31, 37, 49]. Animating full-body models has seen significant
progress with the availability of generative models, ranging from pose-based
animation [3] to audio- and text-driven animation [29, 40, 46]. Overall, visual
representations of 3D humans these days are of excellent quality and drivable
from pose, audio, and text inputs.

However, on the acoustic side of the problem, i.e., rendering spatial sound in
3D for these full-body representations, the research landscape looks dire. It has
been shown that accurate audio-visual modeling is important for an immersive
3D experience [14] but still almost no research exists that would allow to render
spatial audio of virtual humans. Analogous to visual full-body models, acoustic

https://wikichao.github.io/Acoustic-Primitives/


2 C. Huang et al.

Fig. 1: Single high-order soundfield (a) vs. acoustic primitives (b). Existing
approach [44] predicts a high-order ambisonic soundfield around the human body, pre-
venting sound from being rendered in the near-field; our proposed acoustic primitives,
represented as small spheres attached to the body, successfully model a complete and
accurate 3D body soundfield.

full-body models have similar requirements: first, it must be possible to render
spatial sounds produced by a virtual human at any position in 3D space, and
second, the soundfield needs to be drivable. In this work, we focus on gener-
ating and driving full-body soundfields from 3D body pose and head-mounted
microphones.

This problem has recently been addressed in pioneering work by Xu et al . [44],
who developed a neural soundfield rendering system for full body avatars, driven
by body pose and headset microphone input. However, [44] has several major
limitations: The approach relies on a single high order ambisonic (spherical har-
monics) representation that models the sound emitted from the surface of a
sphere around the human body, with a diameter of about 2m. Sound can only
be modeled outside of this sphere, such that near-field modeling of signals closer
to the body is not possible, see Fig. 1a. Moreover, accurate sound reproduction
in [44] relies on extremely high-order ambisonic coefficients which are expen-
sive to compute and instable to estimate. To get around this instability, [44]
does not predict the ambisonic coefficients directly, but instead predicts the raw
audio signal on 345 positions surrounding the body, and then uses traditional
signal processing to compute a 17-th order ambisonic representation from these
345 raw waveforms. This mechanism is computationally inefficient and prevents
realtime sound rendering.

In this work, we propose a novel sound rendering method based on acoustic
primitives which solves the problems of [44]:
Near-field Rendering. We take inspiration from recent methods in visual neural
rendering that rely on volumetric primitives like cuboids [25] or Gaussians [20].
Instead of modeling the body soundfield by an ambisonic representation on a
single sphere around the full human body as in [44], we attach multiple acous-
tic primitives (small spheres each representing low-order ambisonics) to the 3D
human skeleton and model the sound radiating from each of these acoustic prim-
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itives separately, see Fig. 1b. The full soundfield produced by all primitives to-
gether is given by the sum of the individual rendered sound from each primitive.
This way, sound can be modeled arbitrarily close to the body.
Efficient Soundfield Representation. Instead of a single 17-th order ambisonic
representation, we model body sounds by multiple low-order (typically second
order) ambisonic primitives. This reduces the number of parameters characteriz-
ing the acoustic scene by an order of magnitude and allows for a more compact
and efficient soundfield representation.
Efficient Rendering. Instead of predicting 345 raw audio signals and relying
on traditional, costly high-order ambisonic encoders and decoders, we predict
the low-order ambisonic coefficients of each primitive directly. Efficient sound
rendering can then be achieved using spherical wave functions as described in
Sec. 3.2.
Drivability. Same as [44], our method can be driven from body pose and a head
mounted microphone, i.e. 3D soundfields can be generated for novel acoustic
input and body motion. Note that this is in stark contrast to its visual counter-
parts [20, 26] which are designed to synthesize novel views of fixed scenes, but
are typically not drivable from user input.

In summary, we propose an efficient and drivable 3D sound rendering system
with

1. audio-visual driving: given body pose and an audio signal from head-
mounted microphones, we can accurately render the soundfield produced by
the body (speech, snapping, clapping, footsteps, etc) in 3D;

2. real-time rendering: the introduction of acoustic primitives allows for ef-
ficient real-time rendering of 3D sound scenes;

3. high quality: although relying only on low-order ambisonic representations,
we achieve comparable quality to [44] but avoid the high computational cost.

2 Related Works

Spatial Audio Modeling. Existing works on spatial audio rendering are ei-
ther based on traditional signal processing and linear filters [4,6,39] or on more
recent neural binaural renderers [12, 33, 35]. While these approaches can typi-
cally produce spatial audio in an efficient way, they come at strong restrictions,
particularly, they need to know the exact location of each sound source to ren-
der as well as the clean sound signal for each sound location. Such information
is available in fully synthetic, artist-created scenes but is usually unknown in
real environments and real acoustic scenes. Our approach, in contrast, does not
rely on such knowledge and implicitly learns to separate an aggregated audio
signal into its distinct sources (the acoustic primitives) through inverse acoustic
rendering. More recently, data-driven methods aim to produce binaural audio
from audio-visual input information. Chen et al . [5] propose a system to render
a pre-recorded 3D acoustic scene from novel viewpoints, however, this method
can not handle new acoustic scenes. Liang et al . [23] propose to reconstruct the
3D audio-visual scene from videos, but the scene is static. Gao et al . [10] analyze
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a 2D image of a visual scene to generate binaural audio for a given monaural
sound source. Note that this approach can only deal with single sound sources
and can’t handle complex 3D sound scenes. In [28], the authors propose a method
to generate spatial audio from mono acoustic input and 360 degree camera in-
puts. They demonstrate that their approach can correctly localize sound sources
in the scene and generate correct spatial audio at a coarse resolution.
Primitives in Volumetric Rendering. Neural rendering has been revolu-
tionized by volumetric rendering methods like neural volumes [24] and neu-
ral radiance fields [26]. Follow-up works build on volumetric primitives such as
cuboids [25] or Gaussians [20] and render via ray-marching or splatting. These
technologies have unlocked real-time rendering for animatable avatars [7,25,32,
37,49]. We borrow the idea of volumetric primitives and transfer them from the
visual domain into the acoustic domain to build an efficient and low-parameter
characterization of soundfields.
Audio-Visual Learning. Audio-visual learning has been widely applied to
find connections between acoustic and 2D visual signals, e.g . in audio-visual
localization [15, 17, 19, 27, 30, 41], for source-separation [8, 9, 11, 16, 48], or to
learn associations from 360-degree videos [18,22,28]. Application of audio-visual
learning to 3D settings is mostly limited to 3D visual scenarios, such as audio-
visual driving of avatars [29, 34, 36, 43, 46] or audio-driven gesture synthesis [2,
13, 21, 47]. While these works use audio-visual input to learn information about
a scene, they operate on visual outputs and do not model acoustic scenes.

Most closely related to our work is [44], who address the same task we address
in this work. However, as outlined above, [44] has some significant drawbacks
such as the inability to render near-field audio, or the lack of real-time rendering
capabilities.

3 Pose-Guided Soundfield Generation using Acoustic
Primitives

3.1 Problem Definition

Let a1:Ta
(a1, . . . , aTa

) be the input audio signal from one or multiple head-
mounted microphones, and p1:Tp

= (p1, . . . , pTp
) be the corresponding sequence

of 3D body pose, where each pt ∈ RJ×3 is a vector containing 3D body joint
coordinates. We aim to predict a sound signal s at an arbitrary 3D position
(r, θ, φ). Note that we use spherical coordinates. In other words, we learn to aim
a mapping from 3D body pose, headset audio signal, and a 3D position in space
to the audio signal at that 3D spatial position,

a1:Ta
,p1:Tp

, (r, θ, φ) 7→ s1:Ta
. (1)

The core challenge is how to get training data to learn such a model. It
is impossible to place microphones at all positions in 3D space to get dense
sampling of the space. Instead, we follow the strategy of [44] (and actually use
the same public dataset for our work) and sample soundfield signals s1:Ta

only
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on a sphere around the human body. This poses the challenge of rendering the
soundfield at positions that are not on the surface of the sphere on which data
has been captured. Note the analogy to graphics neural rendering: approaches
like NeRF [26] also don’t have spatially dense samples of 2D images taken from a
scene, yet through inductive biases such as the rendering equation, they succeed
in synthesizing the 3D scene from any novel viewpoint. We apply the same
strategy for audio, and learn the mapping in Eq. (1) by differentiation through
the wave propagation function, which we explain in the next section.

3.2 Sound Radiation using Spherical Wave Functions

The general solution of the homogeneous, time-dependent wave equation in the
spherical coordinate system is given by [42,50]:

w(t, f, r, θ, φ) =

∞∑
n=0

n∑
m=−n

[bnm(t, f) · jn(kr) + cnm(t, f) · hn(kr)] · Ynm(θ, φ),

(2)
where (r, θ, φ) are arbitrary coordinates inside a source-free region, t and
f denote the time and frequency (we will omit them in the following sections
for clarity), and k = 2πf/vsound is the corresponding wavenumber; Ynm(θ, φ)
represents the spherical harmonic of order n and degree m, and jn(kr) and hn(kr)
are, respectively, nth-order spherical Bessel and Hankel functions. Coefficients
bnm(t, f) and cnm(t, f) describe, respectively, incoming and outgoing waves. In
particular, considering the scenario depicted in Fig. 1a, only the radiating field
component is present, i.e. bnm = 0, which in literature is known as exterior
domain problem [38,42].

Given recorded or predicted microphone signals on the surface of the sphere
surrounding the body, SoundingBodies [44] approaches the sound field modeling
task as a traditional exterior domain problem and estimates the sound field
coefficients cnm(t, f). While the general solution requires an infinite number of
harmonic orders, the practical estimates are limited by the available number of
microphones M as N =

√
M − 1,

ŵ(r, θ, φ) =

N∑
n=0

n∑
m=−n

ĉnm · hn(kr) · Ynm(θ, φ). (3)

This reliance on a generic solution of the exterior domain problem limits the
practicability of [44]. While the network uses pose information to predict micro-
phone signals, the successive DSP processing of these signals required for spatial
sound rendering (e.g . binauralization) does not leverage pose information at all.
This brings two main issues:

1. To model sound sources located further away from the center of the represen-
tation, see R0 in Fig. 1a, higher harmonic orders are needed, which in turn
requires the network to predict a high number of microphones before any
spatial rendering can be performed; predicting a smaller number of signals
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would limit the harmonic order and, consequently, the rendered scene would
collapse towards the center.

2. The wave equation solution is valid only outside the boundary surface en-
compassing all sources of sound, as shown in Fig. 1a. Inside this region, the
high harmonic orders produce chaotic results, limiting the minimum distance
at which the scene can be rendered and experienced.

To address the above issues we take a different approach. Instead of using pose-
conditioned network to predict microphone signals, we use the network to pre-
dict sound field coefficients directly. Furthermore, instead of trying to estimate
a generic high-order sound field representation, we leverage the knowledge of
possible positions of sound, given by the body pose, and model the sound radia-
tion as a superposition of several small-order elementary sound fields originating
from different positions of the body as depicted in Fig. 1b. Similarly to Eq. (3),
the sound pressure produced by a single elementary field of order N is given by

w(r, θ, φ) =

N∑
n=0

n∑
m=−n

(cnm · hn(krref )) ·
hn(kr)

hn(krref )
· Ynm(θ, φ)

=

N∑
n=0

n∑
m=−n

c̃nm · hn(kr)

hn(krref )
· Ynm(θ, φ),

(4)

where we use hn(krref ) with rref = 0.5m for numerical stability of the learning
process, and refer to harmonic coefficients S = [c̃00, ..., c̃NN ] as an acoustic
primitive.

Given Eq. (4), we can translate the task of modeling 3D spatial sound for
the visual body to learning a set of small acoustic primitives {Si}Ki=1, which
we choose N up to the second order for harmonic coefficients and set the num-
ber of acoustic primitives as K. In practice, capturing ground truth sound field
coefficient is infeasible, while the microphone signals received on the surface
of the dome are available with prior efforts by [44]. Since the produced sound
pressure w(r, θ, φ) indeed represents the audio signal produced at spherical po-
sition (r, θ, φ), we can therefore decompose the entire learning process into two
sub-steps:

– Learning Acoustic Primitives. The main objective of this step is to de-
sign a neural network F that consumes audio and pose data as input, and
output the sound field representation

{Si}Ki=1 = F(a1:Ta
,p1:Tp

). (5)

– Rendering Audio with Learned Acoustic Primitives. With the learned
acoustic primitives {Si}Ki=1, we leverage Eq. (4) as a differentiable render-
ing function, denoted as R, to generate the audio waveform received at the
target position

ŝ1:Ta
(r, θ, φ) = R({Si}Ki=1, r, θ, φ). (6)
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Fig. 2: Our pose-guided acoustic primitive learning framework takes headset micro-
phone signals and body pose information as inputs. It outputs the acoustic primitive
representations, weights, and offsets in one pass. The framework consists of two main
stages. In the first stage, we employ separate encoders to process the audio and pose
signals into feature spaces. An Audio-Pose Feature Fusion Module is then utilized to
combine these features. In the second stage, the fused features are fed into an audio
decoder network to generate the acoustic primitive coefficients. Additionally, two sepa-
rate MLP heads are used to predict the weights and offsets for each acoustic primitive.

The hyperparameter in R is fixed once the harmonic order N and the num-
ber of primitives K are initialized, and all the operations in R are differen-
tiable, making it feasible to run end-to-end training. With the training data
tuple

(
a1:Ta ,p1:Tp , s1:Ta(r, θ, φ)

)
that includes recorded microphone signal at po-

sition (r, θ, φ), we can learn a pose-guided acoustic primitive synthesis system
by simply optimizing the loss between ŝ1:Ta

and s1:Ta
.

3.3 Multimodal Feature Encoding

Pose Encoder. Human body movements offer crucial clues for how sound is
distributed in space. To capture these rich spatial cues, we employ a pose encoder
that processes the input pose sequence p1:Tp

. The pose input is first encoded into
a latent feature representation. To capture temporal relationships, we apply two
layers of temporal convolutions with a kernel size of 5. Finally, we concatenate
the encoded features for all joints and use an MLP to create a compact repre-
sentation, denoted as fp ∈ RCp×T

′
p . Here Cp is the number of feature channels

and T
′

p represents the temporal dimension after convolution. More details are
provided in the supplementary material.
Audio Encoder. While sound can originate from various points on the body
(e.g ., hands, feet), it’s captured by the headset microphone located at a central
position near the head. This difference in location creates a slight time delay
between the moment the sound is produced and when it’s actually recorded.
Previous research has shown that compensating for this time delay can be bene-
ficial [35,44]. In our approach, we leverage the pose features as guidance and use
an MLP (as shown in Fig. 2) to estimate the delay for each acoustic primitive
attached to a body joint, and time-warp the audio signal accordingly.
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Fig. 3: Illustration on the rendering process with the estimated acoustic primitives. (a)
demonstrates how to render a waveform signal given the learned harmonic coefficients
Sk, primitive coordinate offset ∆k, and the weight Wk. Next, we show that for all the
primitives, we render audio generated by the primitive at the targeted location and
aggregate them to yield the final rendered audio at target position (x, y, z).

Via STFT, the warped signals are then transformed into complex spectro-
grams Xc

a ∈ RCh×F×T where F and T represent the number of frequency and
time bins respectively, and Ch is the number of audio channels. The result-
ing audio features are then encoded with a network consisting of convolutional-
and LSTM layers to capture both local context and long-range dependencies
within the audio data. The encoder architecture utilizes four layers, where each
layer contains two ResNet blocks, a temporal LSTM block, and a downsampling
block with a factor of 2. Eventually, we can obtain the latent audio features
fa = Ea(Xa) ∈ RCa× F

16×
T
16 .

Audio-Pose Feature Fusion Module. While headset audio reveals the con-
tent of sounds (e.g ., finger snapping), it lacks precise spatial information about
the source. Conversely, body pose offers strong spatial cues about joint loca-
tions, but cannot identify the sound type (e.g ., speech) solely from pose data.
Therefore, effectively combining audio and pose features is crucial for learning
acoustic primitives and determining their contribution to the final sound gen-
eration. We first interpolate the pose features fp to match the temporal size of
the audio features fa. We then employ a lightweight fusion module with two
ResNet blocks and one attention block to combine the concatenated audio and
pose features, resulting in a new representation denoted as fap ∈ RCa× F

16×
T
16 .

3.4 Acoustic Primitive Decoding

As described in Sec. 3.2, an acoustic primitive determines the audio heard at
arbitrary coordinates inside its sound field. It considers factors like the harmonic
coefficients, the center coordinate of the primitive, and the target location where
the sound is perceived. In this work, we focus on generating sound based on the
target location. This translates to learning two key components: the primitive’s
coordinates and the harmonic coefficients. However, this is non-trivial as the
primitive’s location changes dynamically as the body moves. Additionally, the
harmonic coefficients must capture not only the sound content but also the
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spatial cues such as sound directivity. In the next section, we will explain how
our approach addresses these challenges.
Sound Field Decoder. Leveraging the fused features fap, our decoder Da si-
multaneously generates the sound field representations for all the acoustic prim-
itives. Similar to the input spectrograms Xa, the harmonic coefficients have the
same spatial dimensions but differ in the number of channels, which encode the
richness of the sound’s spatial information. A higher number of channels allows
for more precise control over the perceived location of the sound. For simplicity,
we design the decoder to resemble the audio encoder and add skip connections
between the encoder and decoder, with the main difference being the number
of output channels. The decoder outputs (N + 1)

2 ×K channels. Here, N rep-
resents the order of the harmonic coefficients, which controls the level of detail
captured in the spatial representation. Finally, we separate the decoder’s output
into K distinct harmonic coefficients {Si}Ki=1, one for each acoustic primitive.
Primitive Offsets. We initialize acoustic primitives to be at body joint loca-
tions, e.g . at the wrists, face and ankles. While the initial 3D coordinates of
these body joints provide a reasonable starting point, the actual locations of the
sound sources might differ slightly from the body joint positions. For example,
the chosen keypoints represent wrists, but the sound of finger snapping origi-
nates from the fingers themselves. This discrepancy between the body joint and
sound production locations can affect the learning process and the accuracy of
the rendered spatial audio. To address this limitation, we learn offsets for the
initial coordinates to better represent the actual positions of acoustic primitives.
In practice, we employ a three-layer MLP network that operates on the fused
features fap. First, we apply mean pooling along the frequency axis of fap but
keep its time dimension, obtaining ¯fap. Then, we generate the offsets by

∆(x, y, z) = σ · tanh
(
MLPoffset

(
¯fap
))

. (7)

To constrain the predicted offsets within a reasonable range, we use a tanh
activation function and apply a scaling factor of σ = 0.2 to restrict the offsets
to a maximum range of 20 centimeters around the initial locations.
Primitive Weights. At different points in time, primitives have different im-
portance. For instance, when a finger is snapped, the hand primitive emits high
energy sound while other primitives emit at most low energy. The relationship is
a function of the input audio and body pose. We therefore explicitly model the
weight of each primitive as a function of the combined audio and pose encodings
¯fap,

W = softmax
(
MLPweight

(
¯fap
))

. (8)

W is the predicted weight for each primitive at each time instance and indicates
the relative influence in the final rendered sound.

3.5 Differentiable Acoustic Primitive Renderer

Given the initial primitive locations (i.e. the joint locations to which the prim-
itives are attached), the learned offsets, harmonic coefficients, and weights, we
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can now render the sound field for each primitive (as shown in Fig. 3). We first
compute the primitive’s predicted location by adding the learned offsets to the
corresponding body joint location. Now, given a listener position in 3D space
at which we want to render the sound, we transform each primitive’s predicted
location into spherical coordinates (rk, θk, φk) representing the relative position
of the listener with respect to each of the K primitives. We now use the differ-
entiable audio renderer from Eq. (6) to render the audio signal ŝk1:Ta

produced
by the k-th primitive at the listener’s position,

ŝk1:Ta
= R(Sk ·Wk, rk, θk, φk), (9)

and obtain the full sound field by summation over all acoustic primitives,

ŝ1:T =

K∑
k

ŝk1:T . (10)

3.6 Loss Function

Since our renderer R is differentiable, it allows us to efficiently train the model
using loss functions on the final predicted waveforms. In this work, we employ
a multiscale STFT loss [45] between the predicted audio ŝ1:Ta

and the ground
truth audio s1:Ta

on their amplitude spectrograms, denoted as Lamp(̂s1:Ta
, s1:Ta

)
and on the real and imaginary parts of spectrograms, denoted as Lri(̂s1:Ta

, s1:Ta
).

The window sizes are set as 2048, 1024, 512, 256. As proposed in [44], a shift-ℓ1
loss helps reduce the spatial alignment error. We therefore add this loss term as
Lsℓ1(̂s1:Ta

, s1:Ta
). Additionally, determining a primitive’s contribution to the final

sound (corresponding to the primitive weights W ) can be challenging without
additional guidance. To overcome this, we leverage clip-level labels (denoted by
y ∈ RK) that specify which body joint contributes to the received audio. We
apply average pooling along the frequency dimension and find the maximum
value of W for each primitive across all time steps, resulting in W̃ ∈ RK . This
essentially summarizes whether an acoustic primitive has contributed to the
sound in the audio clip. Finally, a simple cross-entropy loss function Lcts(W̃ , y)
is employed to aid in the learning process. Our final loss becomes

Ltotal = λampLamp + λriLri + λsℓ1Lsℓ1 + λctsLcts. (11)

Please refer to the supplementary materials for ablation on the loss terms.

4 Experiments

4.1 Experimental Setting

Dataset. To evaluate our approach, we leverage the publicly available dataset
introduced in [44] 34. The dataset captures synchronized audio and visual data in
3 https://github.com/facebookresearch/SoundingBodies
4 Note: data used in the paper and data released publicly differ by 1.5 subjects (8

subjects used in [44] vs 6.5 publicly released). We updated the performance metrics
of the baseline [44] to account for this difference.

https://github.com/facebookresearch/SoundingBodies
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Table 1: Our method achieves comparable results to the baseline SoundingBod-
ies [44] in SDR, amplitude error, and phase error, while significantly outperforming the
baseline in inference speed (15x faster).

non-speech speech

Methods Speed SDR ↑ amplitude ↓ phase ↓ SDR ↑ amplitude ↓ phase ↓

[44] 3.56s 3.052 0.832 0.314 9.635 0.701 0.464
Ours 0.24s 3.597 0.883 0.323 8.448 0.943 0.417

an anechoic chamber, offering multimodal data specifically designed for speech
and body sound field modeling research. It utilizes 5 Kinect sensors for body
tracking and a large microphone array (345 microphones) arranged in a spherical
fashion around the recording area. The data encompasses various participants
performing a diverse range of body sounds and speech in different settings (e.g .,
standing or sitting). The recordings are segmented into non-overlapping one-
second clips. We adopt the same train/validation/test splits established by [44],
resulting in 10,076/1,469/1,431 clips, respectively.
Implementation Details. In our experimental setup, we employ a sampling
rate of 48 kHz for audio signals and a frame rate of 30 fps for body pose data.
The audio waveforms are converted into complex spectrograms using a Hann
window of size 512 and a hop length of 128 and FFT length of 1022. Within the
encoders, both the pose features fp and audio features fa are configured to have
the same channel size Ca = Cp = 256. We set the order of harmonic coefficients
to N = 2. During training, the batch size is set as 1 per GPU and we randomly
select 20 microphones from the available pool of 345 target microphones for each
forward pass. The AdamW optimizer with a learning rate of 0.0002 is used, and
the network is trained for 100 epochs. To balance different loss terms, we set
the weights λamp = 7, λri = 3, λsℓ1 = 0.5, and λcts = 1. The experiments are
conducted on 4 NVIDIA Tesla A100 GPUs, with model training for 100 epochs
taking approximately 55 hours to complete.
Evaluation Metrics. We evaluate the performance of our model using three
main metrics: the signal-to-distortion ratio (SDR), the ℓ2 error on the amplitude
spectrogram, and the angular error of the phase spectrogram. The SDR measures
the overall quality of the reconstructed sound, with higher values indicating
better quality. The amplitude error shows how well the reconstructed sound
matches the original in terms of the distribution of sound energy, while the
angular error evaluates the timing accuracy of the reconstructed sound waves
relative to the original. We report amplitude errors multiplied by a factor of 1000
to remove leading zeros.

4.2 Comparison with Baseline

We compare our method using 12 acoustic primitives of 2nd order with the
SoundingBodies [44] baseline. Results are shown in Tab. 1. We can observe that
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speech

body tapping feet tapping

clapping

Fig. 4: Sound field visualizations for 4 different kinds of sound. Main sound field is in
the center and individual primitive contributions are shown around. We can observe
that the method assigns acoustic energy to correct acoustic primitives, e.g. speech
comes mostly from the head with only a very small contribution from the shoulder
primitives. We can also observe the speech directivity pattern matching the head ori-
entation. For each visualization, the left/right 4 primitives are labeled as follows: foot,
hip, hand, and shoulder (from bottom to top), and the middle one is the head.

the sound field modeling performance of the proposed method is comparable to
[44] while having a much faster inference speed. In particular, proposed method
even performs better than the baseline on SDR metric for non-speech sounds
and phase metric for speech. Regarding the inference speed, we show average
time needed to compute 1 second of audio at 48 kHz. Note that for [44] we only
report the time needed for the network to predict the microphone signals. In a
practical scenario [44] needs also DSP processing of these microphone signals to
obtain the high-order sound field representation, which would further increase
the overall processing overhead.

4.3 Ablation Study

In this section we evaluate the impact of the number of acoustic primitives and
their harmonic order. Zero-order harmonics are able to model only omidirectional
fields, while higher orders allow for increasingly complex radiation patterns. Note
that we limit the maximum order to 2 given that PyTorch implementations of
spherical wave functions are available only up to the second order. Intuitively,



Acoustic Primitives 13

Table 2: Ablation study: the number and harmonic order of acoustic primitives.

# K # N
non-speech speech

SDR ↑ amp. ↓ phase ↓ SDR ↑ amp. ↓ phase ↓

5

0th 2.009 1.013 0.334 4.775 1.225 0.559

1st 3.534 0.896 0.322 7.261 0983 0.480

2nd 3.552 0.911 0.323 7.981 0.977 0.442

9

0th 3.059 0.907 0.327 6.619 1.068 0.496

1st 3.600 0.895 0.323 7.479 0.983 0.467

2nd 3.569 0.915 0.323 8.200 0.952 0.434

12

0th 3.020 0.895 0.327 6.893 1.031 0.472

1st 3.616 0.879 0.325 7.616 0.969 0.466

2nd 3.597 0.883 0.323 8.448 0.943 0.417

12 no primitive offset 2nd 3.528 0.919 0.321 7.730 0.998 0.456

a higher number of acoustic primitives allows for modeling of more complex
overall sound fields. We test three configurations of acoustic primitives: 5 prim-
itives: head, L/R hand, L/R foot; 9 primitives: head, L/R hand, L/R foot, L/R
shoulder, L/R hip; and 12 primitives where head and hands have two primitives
associated with the same key-point (given location offsets these primitives are
not bound to be in the same location allowing approximation of a higher order
radiation pattern). Results are shown in Tab. 2. In general, both higher number
of primitives and higher primitive order improve the performance as expected.
This is especially true for speech. For body sounds on the other hand, increasing
from 1st to 2nd order does not seem to be beneficial. We also evaluate the model
without the primitive offset adjustment. From Tab. 2 we can observe that re-
moving the offset has similar impact as decreasing the number of primitives from
12 to 9, which intuitively makes sense given that repeated primitives collapse to
the same key-point location.

For more experiments, such as ablation on the loss terms and visualizations
with different harmonic orders, please refer to the supplementary materials.

4.4 Qualitative Results

Some sound field visualization examples are shown in Fig. 4. We can observe
that the network is able to correctly associate different kinds of sounds to the
appropriate acoustic primitives. We can also observe the speech radiation pat-
tern matching the head orientation. Furthermore, Fig. 5 shows predicted and
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Fig. 5: Predicted and ground truth microphone signals at 5 different locations around
the dome. We can observe good temporal alignment and good amplitude match except
for the low-energy body tapping sound. We recommend zooming in for better visibility.

ground truth waveforms at different microphone locations. We can observe good
temporal alignment and amplitude match for most cases. One exception is the
body tapping sound in which the amplitude does not match across different
microphones. This may be due to the primitive struggling to match a highly
variable radiation pattern.

5 Conclusion

We propose a neural rendering system for sound that allows to generate and
render 3D sound fields from sparse user input like body pose and headset au-
dio. We demonstrate the we maintain similar quality to state-of-the-art sound
rendering, while improving significantly on speed and soundfield completeness:
our approach is an order of magnitude faster than the approach from [44] and is
capable of rendering sound in the near-field, i.e. close to the transmitter’s body,
where the previous approach from [44] failed.

Moreover, we want to highlight the design similarities to successful neural
renderers from computer graphics: By leveraging an acoustic rendering equation
and acoustic primitives, similar to leveraging volumetric primitives in graphical
neural rendering, we design a 3D spatial audio system with a conceptual duality
to its visual counterpart. We hope this work will impact sound rendering in 3D
settings like computer games and AR/VR.
Limitations. Albeit the promising results in terms of quality and efficiency,
our approach is still far from broad availability: model training relies on data
collected with a multi-microphone capture stage that is not broadly available.
Future directions need to aim at enabling learning such acoustic scenes with
simpler setups, ideally with commodity hardware like smartphones. Generaliza-
tion beyond human bodies is another natural extension that emerges from the
availability of broader data sources for spatial sound.
Potential Society Impact. Ethical and societal risks in this work are low
since no data is manipulated in a generative fashion - pure spatialization has
little potential for harmful actors.
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