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Overview

In the supplementary material, we first report additional experiments in Sec.
A and implementation details in Sec. B. We further show an additional visual-
ization in Sec. C, and discuss the responsibility to human subjects and ethical
consideration in Sec. D and E. Limitations and future work are summarized in
Sec. F. A supplementary video is also provided as an additional illustration.

A Additional Experiments

A.1 Hybrid Motion Representation

We additionally conduct an experiment to explore whether a hybrid represen-
tation of mixing deformation and appearance modification could benefit the
performance. The results are reported in Table 5. Upon the basic deformation
4, we first evaluate the setting of additionally predicting a factor to adjust the
opacity a. Then we further try to predict the RGB color of each primitive di-
rectly rather than using the SH feature f. The results show that: 1) Adding
alpha would not help more. This is reasonable since the opacity of each primi-
tive should be a static value. 2) Adding RGB would result in a blurry rendering.
In the first aspect, it would bring a larger burden for the network to store more
information. On the other hand, a non-persistent color can still suffer from the
distortion problem from inaccurate appearance prediction to some extent.

A.2 Extension

Besides the experiment settings in the main paper, our method is scalable and
can extend to a wider range of applications.

* Corresponding authors.
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Table 5: Exploration of hybrid motion representations.

Settings PSNR 1 LPIPS | SSIM 1
S+ a 33.60 0.0261 0.908
§+a+RGB 33.63 0.0264 0.907
5 33.61 0.0259 0.910

Table 6: Exploration of adopting different audio encoders under self-reconstruction
setting. The best and second-best results are in bold and underline.

Extractor Rendering Quality Motion Quality

PSNR+  LPIPS|  SSIM{ | LMD|  AUE(L/U)]  Sync-C 1t
Ground Truth N/A 0 1.000 0 0/0 7.584
DeepSpeech 33.61 0.0259 0.910 2.586 0.53/0.22 6.516
Wav2Vec 2.0 33.59 0.0260 0.911 2.582 0.52/0.23 6.552
HuBERT 33.60 0.0258 0.909 2.583 0.52/0.24 6.667

Audio Feature Extractor. Following previous baselines, we have adopted a
pre-trained DeepSpeech [5] model to extract audio features in the main ex-
periments, for a fair comparison. In fact, our method can also easily connect
to more powerful feature extractors and become stronger. Table 6 shows our
performance with different audio feature extractors Wav2Vec 2.0 [1] and Hu-
BERT |[6] under the self-reconstruction setting. The results demonstrate a high-
quality audio feature could boost the performance of TalkingGaussian, especially
on lip-synchronization, showing the growth potential of our approach.

Cross-Lingual and Cross-Gender. Our method can also applied to more
challenging cross-lingual and cross-gender cases. In this experiment, we collect 4
training videos, in which 2 males and 2 females with English and French audio
are included, and use challenging 3 test audio clips to drive their corresponding
models. The three test audios consist of two German audio clips separately with
a female and a male voice, and a Chinese audio clip with a male voice. In this
setting, we compare our method to two baselines ER-NeRF [9] and GeneFace [11]
that utilize different extractors.

In Figure 7, the results show that our models all perform better than the
baselines while using the same extractors. Notably, GeneFace has further used
the HuBERT features to pre-train an intermediate representation on a large
audio-visual corpus to enhance its generalizability for cross-domain audios. The
generated results have been provided in the supplementary video.

Singing. While inputting a song, our method can even synthesize high-quality
singing talking heads with no such training audio included. This demonstrates
our surprising generalization ability and robustness for cross-domain inputs, and
shows applicability for a wider range of situations. The generated videos can be
found in the supplementary video.
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Table 7: Exploration of cross-lingual and cross-gender situations. The best results for
each audio feature extractor are in bold.

Extractor Methods Female, German Male, German Male, Chinese
Sync-E | Sync-C 1 | Sync-E |  Sync-C1 | Sync-E |  Sync-C 1
DeenSpeech ER-NeRF 9.773 3.273 10.497 3.381 10.577 2.893
PIPEECE  Ours 9.399 3.720 9.677 4.407 10.322 3.378
GeneFace 8.753 4.059 9.208 4.969 10.597 3.720
HuBERT Ours 8.260 4.691 ‘ 8.323 5.556 ‘ 8.856 4.539

B Implementation Details

B.1 Model Details.

Preprocessing. In the main paper, we use a frozen DeepSpeech [5] model to
extract raw audio features. Then a CNN-based attention module in previous
NeRF-based works [4,9,12,13] is adopted to adapt and smooth the audio features.
The upper-face expression feature is composed of a set of action units that only
relate to the upper-face motions, specifically: 1, 2, 4, 5, 6, 7, and 45. We use
the action units detected by OpenFace [2,3] as the input signals. Utilizing the
same preprocessor in previous works [9, 13], we first estimate the head pose via
a BFM [11] facial model, and then inversely calculate the camera pose.

Persistent Gaussian Fields. The Persistent Gaussian Fields are built on the
3DGS repository °. We init the fields with a random point cloud, and inherit the
adaptive density control from 3DGS during training. For rendering, we adopt
a modified 3DGS rasterizer 7, which enables alpha supervision, to penalize the
empty areas.

Grid-based Motion Fields. In the experiments, we use three 2D hash-encoders
[10] with a 3-layer MLP decoder to implement the Grid-based Motion Fields.
For each 2D hash-encoder, we set the resolution range from 16 to 256 in the face
branch, and 64 to 384 for the inside mouth branch. All these encoders are set
with 12 levels. The hidden dimension of the MLP decoder is set to 64 and 32,
respectively for the face and inside mouth branches.

Optimizer. During training, we keep two optimizers to optimize the Persistent
Gaussian Fields and Grid-based Motion Fields separately. For the Persistent
Gaussian Fields, we inherit the Adam optimizer from 3DGS with a similar hy-
perparameter setting to optimize the Gaussians. For the motion fields, we adopt
an AdamW optimizer with learning rates of 5e —3 and 5e —4 for the hash encoder
and other parts. An exponential scheduler is used to adjust the learning rates.

Metrics and Measurements. In the first setting, we measure the PSNR and
LPIPS on the whole image, and SSIM on the face region. We also record the

5 https://github.com/graphdeco-inria,/gaussian-splatting
" https://github.com/ashawkey /diff-gaussian-rasterization
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Fig. 8: Illustration of face and inside mouth segmentation.

person-specific training time and inference FPS of all methods. Since all the
2D-based generative baselines do not modify the upper part of the face, we do
not measure their AUE-U. Notably, we provide another video clip as the image
reference for Wav2Lip to avoid information leakage, for which PSNR, LPIPS,
and SSIM are not valid. In the second setting, we use the non-comparison-based
Sync-C and Sync-E to quantitatively measure the lip-synchronization quality.
AUE-L is the sum of MSE on AU10, AU12, AU14, AU15, AU17, AU20, AU23,
AU25, AU26. AUE-U is the sum of MSE on AU1, AU2, AU4, AU5, AU6, AU7,
AU9, AU45. The MSE loss of each AU item is averaged from all frames.

B.2 Face-Mouth Segmentation

As mentioned in Sec. 3.3, a semantic mask is used to divide the face and inside
mouth in the 2D image. Specifically, we use a combination of two off-the-shelf
face parsing models to generate the mask. First, we use a BiSeNet parser [15] pre-
trained on CelebAMask-HQ dataset [3] to predict a coarse mask that contains
a coarse mouth segmentation for the whole head and inside mouth. Due to
the domain gap, the mouth mask from this face parser may fail to completely
cover the mouth sometimes. To enhance the robustness, we further introduce
a ResNet-based FPN trained on EasyPortrait [7] as a tooth parser to predict
a tooth mask. Finally, we overlay these two masks to get a finer one, then use
the corresponding masked image as Zpasx in Eq. (10, 11) to supervise the two
branches of TalkingGaussian. For each branch, we apply the semantic mask on
both the ground truth image and the predicted result during training. The overall
pipeline is shown in Fig 8.

C Additional Visualization

Here we show some high-definition synthesized frames in Fig. 9 for a conve-
nient and intuitive visualization. Compared with current SOTA methods Gene-
Face [11] and ER-NeRF [9], our method performs best in image quality while
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Fig.9: Additional High-definition Comparisons. ER-NeRF [J] heavily sufferers
the facial distortion problem caused by inaccurate appearance prediction. GeneFace [14]
performs better in preserving fidelity, since it has introduced an intermediate represen-
tation to bridge the audio-visual mapping. However, its synchronization quality drops.
In comparison, our method synthesizes better talking heads both in static and dynamic.

retaining a high lip-sync accuracy. We have also provided more additional re-
sults in our supplementary video. We strongly recommend watching it for better
visualization.

D Dataset Declaration

In the experiments, all of the multimedia datasets we used were obtained from
existing works [4,9, 14]. To our knowledge, most of these data are collected from
the internet. In our work, we have tried our best to use data containing only
public figures to avoid invading personal privacy. All the data are manually
checked to reduce the existence of offensive content.
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E Ethical Consideration

As our target, we hope our TalkingGaussian can promote the healthy develop-
ment of digital industries. However, it must be noted that our method may be
misused for malicious purposes and cause negative influence. We recommend the
responsible use of this technique:

— Informed Consent. Whenever this technique is in use for spread purposes,
ensure that all individuals in the training data have provided explicit, in-
formed consent.

— Disclosure. Please disclose the use of our method, and any other deepfake
techniques as well, in all synthesized products. This is critical to ensure all
audiences are aware that the content is real, and may include misleading
information.

For protection purposes, we will support the development of more powerful
deepfake detectors to alert people to the presence of fake content.

F Limitations and Future Work

In this paper, our proposed TalkingGaussian outperforms in rendering high-
quality lip-synchronized talking head videos, with better facial fidelity and higher
efficiency than previous methods. Despite that, our method still has some limi-
tations.

In the first aspect, some noisy primitives may randomly occur due to the
densification operation of 3DGS. Although this can be relieved by a smoother
optimization process provided by Incremental Sampling, it would still sometimes
influence the quality. In future works, we will consider adding more constraints
to better control the primitive’s growth.

On the other hand, the face and inside mouth branches are aligned via the
audio feature in our method, enabling free and individual learning for their
own motions. Nevertheless, this connection is not tight enough. Although it is
sufficient for most in-domain audio inputs like speeches from the same person
as that in the training data, the face and inside mouth area may be misaligned
in some cross-domain situations. To solve this problem, we may build a better
awareness of these two parts to enhance robustness in the future.
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