
Protecting NeRFs’ Copyright via Plug-And-Play
Watermarking Base Model

Qi Song1,2, Ziyuan Luo1,2, Ka Chun Cheung2,
Simon See2 and Renjie Wan1⋆

1 Department of Computer Science, Hong Kong Baptist University
2 NVIDIA AI Technology Center, NVIDIA

{qisong,ziyuanluo}@life.hkbu.edu.hk {chcheung, ssee}@nvidia.com
renjiewan@hkbu.edu.hk

A Overview

This supplementary material provides additional discussions, implementation
details, and further results complementing the paper:

– Sec. B presents an overview of our method’s ownership verification process.

– Sec. C discusses the novelty of our proposed method, highlighting the key
features and advantages that distinguish it from the existing approach [5].

– Sec. D provides a detailed description of the implementation of our method.

– Sec. E introduces the hyperparameter λ3 for balancing representation and
message distilling in Eq. 9.

B Overview of ownership verification.

In the application scenario, NeRF creators can freely choose one NeRF variant [1,
2,7] and embed the watermark information during the creation process with our
proposed method. Our method provides flexible copyright protection solutions
for NeRF creators. Then, the watermarking base model can be directly utilized
to extract the message from rendered views, even when faced with different
image distortions. Creators can conveniently integrate our watermark embedding
method to effectively prevent unauthorized rendered results from being misused.
This flexibility helps our method gain wider application in the NeRF ecosystem,
meeting the needs of different NeRF creators.

C Uniqueness of our method

Our method is dedicated to distilling copyright messages into NeRF without
altering its core architecture, enabling seamless integration with various NeRF
⋆ Corresponding author.



2 Q. Song et al.

Creator

Watermarked
NeRF

Sharing
Novel views

Creator
Copyright
message

Court judgment

Step 1: NeRF creation

Malicious
user

Step 2:  Copyright verification

Fig. S1: The ownership verification process envisioned in our scenario involves two
key steps: NeRF creation (Step 1) and copyright verification (Step 2). In Step 1, the
owner employs a representation scheme (e.g ., Instant-NGP [7], TensorRF [1] and so
on) to build the NeRF representation. Then, they can directly create a watermarked
NeRF. In Step 2, if malicious users steal the NeRF representation, the NeRF creators
can extract binary watermarks from rendered images for the ownership claim.

variants, including Instant-NGP [7], TensorRF [1], and Plenoxels [2]. This plug-
and-play property showcases its high scalability (as illustrated in Fig. S2). As
for CopyRNeRF [5], it modifies the NeRF architecture (Fig. S3) with dedicated
message modules, resulting in incompatible with mainstream NeRF implemen-
tations. Consequently, NeRF creators lack the freedom to select their preferred
NeRF architecture if they wish to claim ownership. In contrast, our approach
empowers NeRF creators to choose their desired NeRF variants while still retain-
ing the ability to claim ownership, as our method does not modify the core NeRF
architecture. Moreover, unlike CopyRNeRF [5], our method embeds watermarks
during the NeRF creation process, minimizing the window of opportunity for
malicious actors to misuse the NeRF.

D Implementation details

D.1 Details on building watermarking base model

The message extractor of HiDDeN [10] is used as our watermarking base model.
We keep the same architecture and training settings as in HiDDeN [10]. The
code for training HiDDeN [10] can be found in the link below:
https://github.com/ando-khachatryan/HiDDeN.
Architecture of HiDDeN [10]. HiDDeN [10] contains an encoder for mes-
sage embedding and a decoder for message extraction. The encoder comprises
four Conv-BN-ReLU blocks, each equipped with 64 output filters, 3 × 3 ker-
nels, a stride of 1, and padding of 1. The extractor consists of seven blocks,
followed by a block with k output filters (where k denotes the number of bits

https://github.com/ando-khachatryan/HiDDeN


NeRFProtector 3

Done by NeRF creator

messages
NeRF Creation

Watermarked
NeRF Novel views

10 1 1 0

10 1 1 0

0 1 1 0

Watermarking base model library

model-Nmodel-1

NeRF model library

model-1 model-N

1
Distill

Fig. S2: The proposed creation process of our method. First, NeRF creators can choose
a NeRF variant (e.g ., Instant-NGP [7], TensorRF [1], and Plenoxels [2] and so on).
Second, NeRF creators can acquire a pre-trained watermarking base model F .(e.g .,
HiDDeN [10], MBRS [3] and so on), sourced from a third party (e.g ., open-source li-
brary) or train a message extractor separately via standard pipelines. This base model
is considered to be “plug-and-play” in our scenario. During NeRFs’ creation, cre-
ators can seamlessly integrate a base model to embed watermarks within their NeRFs.
Upon completion of the NeRF optimization, they obtain a watermarked NeRF. Once
this watermarked NeRF is distributed publicly, the creators can utilize the same base
model to retrieve binary messages from newly rendered views, thereby asserting their
ownership over the content.

to be concealed), an average pooling layer, and a k × k linear layer. For a more
comprehensive understanding of the architecture, we recommend referring to the
original paper [10].
Image distortion layer. The Image distortion layer is responsible for generat-
ing operated versions of the watermarked image in order to enhance its robust-
ness against image processing and distortions. In our experiments, the distortion
layer employs random operations, including cropping, resizing, and JPEG com-
pression. The parameters for cropping or resizing are chosen randomly from 0.3
to 0.7. Additionally, there is a 50% probability of applying JPEG compression,
with the compression parameter set 50 to 80.
Optimization. We train HiDDeN [10] on the MS-COCO dataset [4].The size
of training images is set to 256 × 256. The number of bits k is set to 48, and a
scaling factor of α = 0.3. The optimization process took approximately a day
and is performed on 8 GPUs using the Lamb optimizer [9]. Each GPU has a

NeRF Our methodNeRF CopyRNeRF

Fig. S3: Comparison between our method and CopyRNeRF [5]. To embed messages
into NeRF, CopyRNeRF [5] modifies the representation scheme by appending addi-
tional message modules. Different from CopyRNeRF [5], our method is able to embed
watermarks directly into the core representation of NeRF.



4 Q. Song et al.

batch size of 64. We employ a cosine annealing schedule for the learning rate,
starting with a linear warmup of 5 epochs to 1 × 10−2, and then decaying to
1× 10−6.

D.2 Details on message distillation

With the watermarking base model F , we then distill message patterns into
NeRF during its creation.

For each scene, a 48-bit message m is randomly selected. In every training
iteration, a camera pose corresponding to the training view is chosen, and a
global progressive rendering strategy is used. The content loss Llocal and the
similarity loss Linv between the rendering image and its corresponding ground
truth are calculated. Ldis is calculated by the extracted messages set from these
multi-layered representations and the select message m. The distilling loss Ldis
is the binary cross-entropy loss between embedded message m and the extracted
message m̂. Additionally, we also find that only a few extra minutes are needed
to achieve effective message embedding and high-quality scene representation.
Thus, our message embedding also does not significantly change the time needed
to create NeRF. After the creation of NeRF, the copyright message m ∈ {0, 1}48
can be extracted from every view rendered by using our watermarking base
model. The results show that our proposed method can achieve a good balance
between bit accuracy and representation performance.

D.3 Robustness to image transformations

In Section 5.2, we evaluate the robustness of the watermark extraction to various
distortions and transformations. These transformations simulate common image
processing steps found in image editing software. The transformations are illus-
trated in Fig. S4. For the crop and resize transformation, the parameter is the
ratio of the new area to the original area. For JPEG compression, the parameter
is the quality factor, where a higher value (usually 90% or higher) represents
high quality; value (80%−90%) and (70%−80%) represent medium quality and
low quality, respectively. For brightness, contrast, saturation, and sharpness, the
parameter represents the default factor used in the PIL and Torchvision [6] li-
braries. Text overlay is achieved through the AugLy library [8], which adds text
to the image at a random position.

Table S1: Representation and bit accuracy trade-off during creation. our method sets
λ3 = 0.001 to achieve the best balance in NeRF representation and watermarking
performance.

λ3 0.1 0.01 0.001 0.0001
PSNR ↑ 27.91 30.97 31.61 32.74

Bit acc. % ↑ 95.15 94.15 93.41 72.60



NeRFProtector 5

Ground truth

Sharpness 3

Resize 0.5

JPEG 60

Contrast 3

Text overlay

Crop 0.3

Fig. S4: Visual illustration of transformations evaluated in section 5.2

Fig. S5: Visual results of different balance values λ3. As the decrease of λ3, the quality
of reconstructed scene representation becomes better.

E Additional experiment results

Effects of λ3 in Eq. 9. Balance hyperparameter λ3 is able to balance the mes-
sage embedding and representation quality. We conduct experiments in evaluat-
ing the effectiveness of λ3. We report the average PSNR and Bit accuracy on the
messages extracted from test views. As shown in Table S1 and Fig. S5, a higher
λ3 leads to higher bit accuracy of the extracted message but lower quality of
scene representation. In our experiment, we set λ3 to 0.001 as it well balances
message embedding and representation quality.

References

1. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: Tensorial radiance fields.
In: ECCV (2022)

2. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-
els: Radiance fields without neural networks. In: CVPR (2022)

3. Jia, Z., Fang, H., Zhang, W.: MBRS: Enhancing robustness of dnn-based water-
marking by mini-batch of real and simulated jpeg compression. In: ACM MM
(2021)



6 Q. Song et al.

4. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014)

5. Luo, Z., Guo, Q., Cheung, K.C., See, S., Wan, R.: CopyRNeRF: Protecting the
copyright of neural radiance fields. In: ICCV (2023)

6. maintainers, T., contributors: TorchVision: Pytorch’s computer vision library.
https://github.com/pytorch/vision (2016)

7. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. TOG (2022)

8. Papakipos, Z., Bitton, J.: AugLy: Data augmentations for robustness (2022)
9. You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel,

J., Keutzer, K., Hsieh, C.J.: Large batch optimization for deep learning: Training
bert in 76 minutes. In: ICLR (2020)

10. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: HiDDeN: Hiding data with deep
networks. In: ECCV (2018)

https://github.com/pytorch/vision

	Protecting NeRFs' Copyright via Plug-And-Play Watermarking Base Model

