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Abstract. Point cloud completion involves inferring missing parts of 3D
objects from incomplete point cloud data. It requires a model that under-
stands the global structure of the object and reconstructs local details.
To this end, we propose a global perception and local attention network,
termed AEDNet, for point cloud completion. The proposed AEDNet
utilizes designed adaptive point cloud embedding and disentanglement
(AED) module in both the encoder and decoder to globally embed and
locally disentangle the given point cloud. In the AED module, we intro-
duce a global embedding operator that employs the devised slot atten-
tion to compose point clouds into different embeddings, each focusing on
specific parts of 3D objects. Then, we proposed a multiview-aware dis-
entanglement operator to disentangle geometric information from those
embeddings in the 3D viewpoints generated on a unit sphere. These 3D
viewpoints enable us to observe point clouds from the outside rather than
from within, resulting in a comprehensive understanding of their geome-
try. Additionally, the arbitrary number of points and point-wise features
can be disentangled by changing the number of viewpoints, reaching high
flexibility. Experiments show that our proposed method achieves state-
of-the-art results on both MVP and PCN datasets.
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1 Introduction

The field of 3D computer vision has seen considerable growth, driven by the
development of technologies such as Light Detection And Ranging (LiDAR)
and depth cameras. Yet, the 3D models generated by these sensors are often
incomplete and sparse due to inherent limitations in sensor resolution and ob-
stacles with objects only partially visible from the sensor’s perspective. These
shortcomings pose significant challenges for downstream applications, includ-
ing robotic manipulation and autonomous vehicle navigation, highlighting the
importance of accurately reconstructing full, detailed 3D structures from incom-
plete scans [11,50].
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Fig. 1: Illustration of AED Module in AEDNet. The geometric patterns of the input
point clouds are initially organized into separate embeddings and each embedding fo-
cuses on a specific part of a 3D object. Next, 3D viewpoints (“’cameras’) are evenly
distributed around a unit sphere using the Fibonacci point sequence generation algo-
rithm, and they are adapted to the model’s surface based on these embeddings. An
arbitrary number of samples can be obtained by varying the count of 3D viewpoints.

Point cloud object completion involves creating complete 3D models from
partial 3D scans. The encoder-decoder framework is commonly employed in deep
learning approaches for this task, as noted in several studies [1,14,23,24,29,36,
38, 41, 47, 48, 52, 54]. During the encoding phase, the challenge lies in captur-
ing local geometries, particularly in defining an ambiguous local neighborhood.
Typically, anchor points are first selected using farthest point sampling (FPS)
followed by a k-nearest neighbor (KNN) search to establish local neighborhoods
for feature extraction [23, 38, 41, 52]. However, FPS’s sensitivity to noise has
been highlighted in [18, 35, 55]. This leads to the development of FPS-inspired
methods [35,44,44,55] that refine point selection through attention mechanisms.
However, these methods typically rely solely on local geometric information in-
stead of considering the global structure, leading to sub-optimal sampling for
point cloud completion. In the decoding phase, a common technique involves en-
coding the observed points into a global feature vector to predict the complete
points via a generative process based on this vector [48]. Yet, this approach of-
ten struggles to generate high-quality shapes since a global feature vector cannot
fully represent the varied patterns within an object. Recently, there has been a
growing use of local pattern query techniques [1, 47, 52], which employ anchor
points as queries to establish correlations with complete 3D shapes through the
transformer [30] model. This method enhances the accuracy of predicting an
initial coarse object shape, which is then further refined using foldingNet [45]
or deconvolution operations [41, 52]. The concatenation approach employed by
vanilla folding methods restricts their ability to generate intricate and faithful
shapes [42], while deconvolutions lack the ability to capture necessary global
context for comprehensive shape perception. Consequently, there is a need for a
framework that integrates both global perception and local attention, specifically
tailored for point cloud completion.

In this paper, we address this need by proposing a global perception and
local attention network. We propose an Adaptive point cloud Embedding and
Disentanglement (AED) module, including a global embedding operator and a
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multiview-aware disentanglement operator (refer to Fig. 1). It first compresses
input point clouds into embeddings, allowing each embedding to focus on a
specific part of a 3D object. These embeddings act as global geometric rep-
resentations of the input point cloud. Then, we propose to employ multi-view
information to further enhance local geometric disentanglement. Particularly, we
approach embedding learning as a form of set learning and propose a devised
slot attention mechanism to automatically group input point clouds into distinct
embeddings. Specifically, we replace Gaussian noise initialization, used in [19],
with dictionary embedding and apply self-attention to further globally compose
embeddings, thereby enhancing the ability to capture the complex structures
within point clouds. For the multiview-aware disentanglement operator, we first
use the Fibonacci point sequence generation algorithm [31] to evenly distribute
3D viewpoints (“cameras” in Fig. 1) on a unit sphere, and then encode the re-
lationships between these viewpoints and the input point cloud into viewpoint
encodings. Then, geometric details from these embeddings are locally disentan-
gled to points on a 3D object’s surface as well as point-wise features within
these viewpoints. Different from previous methods [1, 41, 48, 52], the generated
3D viewpoints enable us to observe objects from the outside rather than from
within, resulting in a more comprehensive understanding of their geometry.

In the encoder, we use the proposed AED module in conjunction with the
point transformer [51] to hierarchically extract point-wise features and sam-
ple anchor points from input partial point clouds. Rather than relying solely
on FPS for k-nearest neighbor aggregation [26], our AED module can establish
long-distance dependencies among input points, resulting in higher-quality repre-
sentation. Moreover, the anchor points are sampled with a global understanding
of input point clouds in a learning manner instead of using FPS, making less
sensitive to noisy input. In the decoder, we follow a coarse-to-fine completion
process by hierarchically employing the proposed module. After obtaining the
coarse prediction, the proposed AED module first aggregates its geometric pat-
terns into embeddings and then disentangles more points from it by adjusting
the number of 3D viewpoints sampled from a unit sphere. Thus, the proposed
AED module can be used as a down-sampler in the encoder and an up-sampler
in the decoder.

Our experimental results confirm that our proposed AEDNet attains leading
performance on both the MVP [24] and PCN datasets [48]. Our contributions
are as follows:

– We introduce AEDNet, a novel network specifically designed for point cloud
completion, aimed at significantly enhancing global geometry embedding and
local disentanglement.

– We propose a devised slot attention mechanism to significantly enhance the
embedding of complex structures within point clouds.

– We propose a multiview-aware disentanglement to improve local geometry
reconstruction for point cloud completion.

– Our approach achieves unparalleled completion results on the MVP and PCN
benchmark datasets, achieving state-of-the-art performance in the field.
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2 Related Work

In this section, we examine existing research on point cloud processing, focusing
on point cloud completion and slot attention.

Point Cloud Completion. Historically, significant progress in 3D recon-
struction and shape completion has been made using structured volumetric
methods and robust 3D convolutions [3,4,7,12,40]. These approaches, however,
come with high computational and memory requirements. Sparse representation
techniques [28, 33] attempt to address these issues, but they often result in the
loss of detailed information due to the quantization involved.

Recent shifts toward unstructured point clouds as representations for 3D
objects have helped to reduce memory usage and better preserve fine details.
This transition brings new challenges, as standard convolution operations do not
translate well to the unordered nature of point clouds. Innovations like PointNet
and its variants [25,26] have allowed for the direct handling of 3D points across
multiple downstream tasks. The PCN network [48] adopts a global feature ex-
traction method inspired by PointNet [25] and introduces a folding technique [45]
for point generation. Efforts to capture local structures in point clouds have led
to multi-scale feature extraction methods [49]. Lyu et al. [21] approached point
cloud completion as a conditional generation task using denoising diffusion prob-
abilistic models (DDPM) [13, 20, 53]. While their method achieves fine-grained
completion using a simple mean squared error loss function [27], it is computa-
tionally demanding, limiting its use to preliminary stages of coarse point cloud
generation. More recently, Chen et al. [2] leverages the conditional DDPM in
the 3D latent space for shape reconstruction. Examining the role of viewpoint
information, Fu et al. [6] found it enhances completion quality and performance
but requires an additional trained model for viewpoint representation learning.
More advanced architectures like SnowflakeNet [41] and PointTr [47] emphasize
decoder structures with Transformer-like designs [30], and PointAttN [32] and
CompleteDT [17] introduce a Transformer-based model tailored to point cloud
completion. Recently, Seedformer [52] and Acchorformer [1] explored the impact
of local pattern propagation both in seed generation and point up-sampling,
highlighting the importance of local geometry propagation for detailed point
cloud completion. Differently, in this paper, we propose a multiview-aware dis-
entanglement to recover the details of 3D shapes.

Slot Attention. Slot Attention Networks (SANs) infer a set of latent vari-
ables, each representing an object within the image. Methods focused on “object-
centric learning” [5, 8, 9, 16, 19] strive to identify generative factors that corre-
late with parts or objects in the scene. SANs employ a feed-forward pass that
uses the attention mechanism [30] to assign latent variables to permutation-
invariant slots, making this feature ideal for deep learning approaches to point
cloud processing. In this paper, slot attention serves as a dynamic clustering
tool, automatically partitioning the input point cloud into distinct local areas
and capturing the geometric details of these areas into slots. This approach dif-
fers from the grouping layer in PointNet++ [26] as our aggregation operates
in a high-dimensional space without relying on Farthest Point Sampling (FPS),
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thereby minimizing the adverse effects of noisy input data. However, current slot
attention-based segmentation techniques [8, 16, 19] exhibit a notable drawback:
they predominantly perform well on synthetic images featuring uniform colors
and layouts or on objects distinctly separated by color and shape, or simple
textures. Their performance deteriorates in more complex, real-world environ-
ments due to several factors, such as the challenge of randomly initializing slots
to represent meaningful context in intricate scenes and the lack of established
relationships among different slots, resulting in a weak semantic linkage between
them.

To address these issues, we propose altering the initial slot attention ap-
proach by applying dictionary mapping for initialization and by constructing
inter-slot relationships. Furthermore, we introduce an adaptive embedding and
disentanglement method that leverages the proposed slot attention together with
a new local geometry disentanglement module, targeting enhanced accuracy and
structural coherence.

3 Methodology

3.1 Overview

Our point cloud completion framework, as shown in Fig. 2(a), operates through
two principal phases: encoder and decoder. The encoder stage is responsible for
extracting features, while the decoder stage employs a coarse-to-fine strategy for
completion. Initially, a partial scan is fed to the encoder, where it is processed
by our proposed AED module in conjunction with a point transformer (PT),
as depicted in Fig. 2(b). This setup allows for the hierarchical extraction of
point-wise features. Subsequently, these features are forwarded to the coarse
completion stage, as shown in Fig. 2(c), where the preliminary shape of the
complete 3D object and its global feature is predicted. The final phase of this
process is the refinement phase, where the initial shape is enhanced through
systematic up-sampling of the point cloud, facilitated by our GAED module, a
procedure illustrated in Fig. 2(d).

3.2 Feature Extraction

Many current point cloud completion methods [1, 38, 41, 52] rely on Farthest
Point Sampling (FPS) and K-Nearest Neighbors (KNN) to identify the local
neighborhoods of points for local feature extraction, making them vulnerable to
noise. In this paper, we use the proposed AED and PT techniques to perform
feature extraction without the need of FPS. For an incomplete point cloud Pin ∈
RN×3, we apply our AED module (illustrated in Fig. 2(b)) to execute both
embedding and disentanglement operations. This process results in M points
(with M < N) and their associated features, which are then refined using PT.
AED: Embedding (Fig. 2(b)). “Object-centric learning” methods [5, 8, 9, 16,
19] leverage slot attention to uncover generative factors related to components or
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（a）An overview of Proposed AEDNet (Sec. 3.1)

（b）The Structure of AED Module (Sec. 3.2)

（d）The Structure of GAEDi-1 Module (Sec. 3.4)（c）The Structure of Coarse Completion (Sec. 3.3)
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Fig. 2: An Overview of AEDNet. (a) The complete AEDNet framework encompasses
the feature extraction, coarse and fine completion processes. (b) The detailed structure
of the proposed AED module, includes an embedding operator and a multiview-aware
disentanglement operator. (c) The coarse completion phase, includes a seed generator
and a seed fusion technique to predict the initial shape of the 3D object. (d) Finally,
the fine completion phase involves the use of GAED modules for the hierarchical up-
sampling of the point cloud to achieve the final detailed output.

objects within a scene. However, traditional slot attention techniques primarily
excel with synthesized images characterized by uniform colors and layouts, or
objects easily distinguishable by color, shape, or simple textures, but struggle
to handle the complexities of real-world scenes. The diverse shapes of different
objects and recurring similar structures within a single object present a substan-
tial challenge for conventional slot attention in point cloud completion tasks. To
address this, we adapt slot attention by refining how slots are initialized and
enhancing the semantic interactions between slots.

Specifically, we initially use multi-layer perceptrons to generate point-wise
features pf , which are then processed through two linear layers to produce key
and value features. We improve on the standard slot attention mechanism [19]
by employing a learnable dictionary for mapping, as opposed to using Gaussian-
initialized slots, yielding a set of slot features qf0 ∈ RM×C , with M < N .
These slot features, along with the key and value features, are introduced to
the attention mechanism and a Gated Recurrent Unit (GRU) for updating the
slot features. Furthermore, we apply self-attention in conjunction with MLPs to
forge semantic links among slot features, resulting in the final slot feature qfi .
This embedding process is iteratively conducted three times (i.e., i ranging from
1 to 3), resulting in the ultimate embedding feature fu = qf3 .
AED: Multiview-aware Disentanglement (Fig. 2(b)). Following the em-
bedding of point features, we propose a viewpoint-aware method to disentangle
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local geometry from these embeddings. We first use the Fibonacci point sequence
generation algorithm [31] to evenly distribute n 3D viewpoints on a unit sphere.
The produced 3D viewpoints allow us to view objects externally rather than
internally, leading to a deeper grasp of their geometry and structure. Then,
relative position encoding between viewpoints and sparse input point clouds is
calculated using MLPs. These viewpoint encodings qpf

, together with fu, are
then applied to a cross-attention module, effectively segregating geometric de-
tails and linking them to the viewpoint encodings qpf

. Subsequent use of MLPs
enables the regression of the coordinates and features of the sampled points pap
and paf , respectively. A point transformer module [51] further refines the sam-
pled features by analyzing the positional relations among the sampled points.
Throughout this feature extraction phase, our AED module plays a crucial role
in both reducing the size of the point cloud and accurately learning the features.

3.3 Coarse Completion

Seed Generator (Fig. 2(c)). As highlighted in previous studies [1,41,47,52],
the diffusion of local geometry is crucial for the successful completion of point
clouds. In our approach, we employ an embedding and disentanglement strat-
egy to predict the foundational structure of complete objects. After acquiring
the extracted features fe from the feature extraction phase, we proceed with
our coarse completion technique (illustrated in Fig. 2(c)) to predict the initial
complete point cloud, named as P0 ∈ RN0×3. Specifically, we leverage our newly
designed embedding module to compile fe into fa. Subsequently, fa undergoes
processing via two separate pathways: the first employs max-pooling to extract
a global feature f0, and the second uses deconvolution to expand fa into fs, di-
verging from SnowflakeNet’s [41] method of directly generate point-wise features
by enhancing the use of geometric information through the up-sampling of fa.
Following this, we merge f0 with the up-sampled fs and apply MLPs to generate
N0 points, represented by Pm.
Seed Fusion (Fig. 2(c)). Recognizing the presence of detailed structures within
the incomplete inputs, we aim to integrate the predicted Pm ∈ RN0×3 with
the original incomplete point cloud. This integration begins by combining Pm

with Ps, which is derived from the incomplete point cloud Pin through Farthest
Point Sampling (FPS). Following this, we employ a differentiable Top-K selection
method to isolate N0 points from this combined set, establishing the initial shape
of the complete point cloud as P0 ∈ RN0×3. To refine the accuracy of this initial
shape selection, we have formulated a specialized loss function, which is detailed
further in Section 3.5.

3.4 Fine Completion

To reconstruct objects with detailed completeness, we employ the proposed
GAED method for the hierarchical up-sampling of the initial complete point
cloud shape P0, as shown in Fig. 2(d). Each iteration of GAED takes the pre-
vious point cloud prediction Pi−1 and the global feature f0 to derive point-wise
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features pwi
of a higher resolution. This approach differs from the feature extrac-

tion phase, where GAED samples a greater number of points from a unit sphere
than the input points Ni−1 in the up-sampling stage. Moreover, at this phase,
we focus solely on predicting point-wise features, as opposed to predicting both
points and point-wise features as done in the encoder stage. Subsequently, the
point-wise features are concatenated with the global feature f0 to estimate the
residuals of the duplicated Pi−1.

3.5 Loss Functions

To quantify the disparity between two point clouds, we adopted the Chamfer
Distance (CD) for its efficiency compared to Earth Mover’s Distance (EMD).

LCD(P,G) =
1

∥P∥1

∑
x∈P

min
y∈G

∥x− y∥2 +
1

∥G∥1

∑
y∈G

min
x∈P

∥y − x∥2, (1)

where P and G represent the predicted complete point clouds and the actual
ground truth, respectively.

To explicitly constrain point clouds sampled from the input point cloud, we
treat the input point cloud as ground truth and use a variant CD loss.

Lsampling(Pin, Ps) = λ
1

∥Ps∥1

∑
x∈Ps

min
y∈Pin

∥x− y∥2 +
1

∥Pin∥1

∑
y∈Pin

min
x∈Ps

∥y − x∥2,

(2)
In this case, λ = ∥Pin∥1/∥Ps∥1 where Pin and Ps are the input points and

sampled points.
To impose specific constraints on point clouds created during coarse and fine

completion, we down-sampled the ground truth point clouds to match the sam-
pling density of P0, P1, P2, P3. During coarse completion, we apply the Chamfer
Distance (CD) loss in combination with the repulsion loss [46] (Lrep) to form
the seed loss, labeled Lseed. In the fine completion stage, the aggregate of the
three CD losses is termed the completion loss, represented by Lcompletion.

Lseed = LCD(P0, gt0) + λsLrep(P0), (3)

Lgeneration = LCD(P1, gt1) + LCD(P2, gt2) + LCD(P3, gt3), (4)

where gt0, gt1, gt2, gt3 are down-sampled ground truth point clouds correspond-
ing to P0, P1, P2, P3. λs here is set to 0.05.

We also exploit the partial matching loss from [37] to preserve the structural
shape integrity of the input point cloud. This is a unidirectional constraint de-
signed to align one shape to another. The partial matching loss ensures that the
output point cloud partially matches the input to a certain extent, which we
refer to as the preservation loss, Lpreservation. The overall training loss is:

L = Lsampling + Lseed + Lgeneration + Lpreservation. (5)
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4 Experiments

In this section, we will first introduce the datasets and discuss the implementa-
tion details (Sec. 4.1), then move on to present our completion results on both
the MVP (Sec. 4.2) and PCN datasets (Sec. 4.3).

4.1 Datasets and Implementation Details

MVP Dataset [24]: The MVP dataset includes 16 categories with 4000 CAD
models. Each model is virtually scanned from 26 camera positions to create
partial scans.
PCN Dataset [48]: Originating from a subset of the ShapeNet dataset [4],
the PCN dataset includes complete point clouds of 16384 points against incom-
plete point clouds with 2048 points. The training set has 28,974 models across
8 categories.
Implementation Details: For feature extraction, we used two down-sampling
operations in our AEDNet to generate 512 and then 64 points. For coarse com-
pletion, we predicted an initial complete shape with 512 points. During fine
completion, we performed three up-sampling operations with our AED module,
resulting in 512, 1024, and 2048 points, respectively. Specifically, we performed
uniform sampling of 512, 1024, and 2048 points from the unit sphere during the
three consecutive AED module operations. We opted for the Adam optimization
method [15] with β1 = 0.9 and β2 = 0.999 for training, running for 50 epochs
on the MVP dataset and 400 on the PCN dataset. The learning rate was set to
10−4, and was reduced by 30% every 20 epochs. All tests were conducted on an
NVIDIA 3090Ti GPU.

4.2 Completion on the MVP Dataset

We assessed the MVP dataset against a variety of leading-edge baseline methods
using the L2 Chamfer Distance and F-Score@1% as performance metrics. The
results for the baseline methods [1, 21, 24, 35, 41] were produced from the codes
and pre-trained models available in their respective official Github projects. The
results for the remaining methods were taken directly from [21, 24] and the
original publication [6].

Table 1: Shape completion results (CD loss multiplied by 104) on the multi-view
partial (MVP) point cloud dataset (16,384 points). The lower, the better.

Method airplane cabinet car chair lamp sofa table watercraft bed bench bookshelf bus guitar motorbike pistol skateboard Avg.

PCN [48] 2.95 4.13 3.04 7.07 14.93 5.56 7.06 6.08 12.72 5.73 6.91 2.46 1.02 3.53 3.28 2.99 6.02
TopNet [29] 2.72 4.25 3.40 7.95 17.01 6.04 7.42 6.04 11.56 5.62 8.22 2.37 1.37 3.90 3.97 2.09 6.36
MSN [18] 2.07 3.82 2.76 6.21 12.72 4.74 5.32 4.80 9.93 3.89 5.85 2.12 0.69 2.48 2.91 1.58 4.90

Wang et al. [34] 1.59 3.64 2.60 5.24 9.02 4.42 5.45 4.26 9.56 3.67 5.34 2.23 0.79 2.23 2.86 2.13 4.30
ECG [23] 1.41 3.44 2.36 4.58 6.95 3.81 4.27 3.38 7.46 3.10 4.82 1.99 0.59 2.05 2.31 1.66 3.58

GRNet [43] 1.61 4.66 3.10 4.72 5.66 4.61 4.85 3.53 7.82 2.96 4.58 2.97 1.28 2.24 2.11 1.61 3.87
NSFA [49] 1.51 4.24 2.75 4.68 6.04 4.29 4.84 3.02 7.93 3.87 5.99 2.21 0.78 1.73 2.04 2.14 3.77

VRCNet [24] 1.15 3.20 2.14 3.58 5.57 3.58 4.17 2.47 6.90 2.76 3.45 1.78 0.59 1.52 1.83 1.57 3.12
Our AEDNet 0.74 2.99 2.27 2.75 2.79 2.96 2.64 1.98 4.73 1.96 3.01 1.71 0.38 1.50 1.55 0.81 2.24
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Table 2: Shape completion results (F-Score@1%) on the multi-view partial (MVP)
point cloud dataset (16,384 points). The higher, the better.

Method airplane cabinet car chair lamp sofa table watercraft bed bench bookshelf bus guitar motorbike pistol skateboard Avg.

PCN [48] 0.861 0.641 0.686 0.517 0.455 0.552 0.646 0.628 0.452 0.694 0.546 0.779 0.906 0.665 0.774 0.861 0.638
TopNet [29] 0.798 0.621 0.612 0.443 0.387 0.506 0.639 0.609 0.405 0.680 0.524 0.766 0.868 0.619 0.726 0.837 0.601
MSN [18] 0.879 0.692 0.693 0.599 0.604 0.627 0.730 0.696 0.569 0.797 0.637 0.806 0.935 0.728 0.809 0.885 0.710

Wang et al. [34] 0.898 0.688 0.725 0.670 0.681 0.641 0.748 0.742 0.600 0.797 0.659 0.802 0.931 0.772 0.843 0.902 0.740
ECG [23] 0.906 0.680 0.716 0.683 0.734 0.651 0.766 0.753 0.640 0.822 0.706 0.804 0.945 0.780 0.835 0.897 0.753

GRNet [43] 0.861 0.641 0.686 0.517 0.455 0.552 0.646 0.628 0.452 0.694 0.546 0.779 0.906 0.665 0.774 0.861 0.638
NSFA [49] 0.903 0.694 0.721 0.737 0.783 0.705 0.817 0.799 0.687 0.845 0.747 0.815 0.932 0.815 0.858 0.894 0.783

VRCNet [24] 0.928 0.721 0.756 0.743 0.789 0.696 0.813 0.800 0.674 0.863 0.755 0.832 0.960 0.834 0.887 0.930 0.796
Our AEDNet 0.947 0.766 0.757 0.794 0.850 0.754 0.856 0.828 0.735 0.893 0.807 0.848 0.974 0.843 0.899 0.956 0.832

Table 3: Shape completion results (CD loss multiplied by 104) on multi-view partial
point cloud (MVP) dataset with various point cloud resolutions.

#Points 2048 4096 8192 16384
CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑

PCN [48] 9.77 0.320 7.96 0.458 6.99 0.563 6.02 0.638
TopNet [29] 10.11 0.308 8.20 0.440 7.00 0.533 6.36 0.601
MSN [18] 7.90 0.432 6.17 0.585 5.42 0.659 4.90 0.710

Wang et al. [34] 7.25 0.434 5.83 0.569 4.90 0.680 4.30 0.740
ECG [23] 6.64 0.476 5.41 0.585 4.18 0.690 3.58 0.753

GRNet [43] 7.61 0.353 5.73 0.493 4.51 0.616 3.54 0.700
VRCNet [24] 5.96 0.499 4.70 0.636 3.64 0.727 3.12 0.791
PoinTr [47] 5.79 0.499 4.29 0.638 3.52 0.725 2.95 0.783

PMP-Net++ [39] - - - - - - 3.38 0.687
Wang et al. [35] - - - - - - - 0.816

SnowflakeNet [41] 5.71 0.503 4.45 0.648 3.48 0.743 2.69 0.796
PDR [21] 5.66 0.499 4.26 0.649 3.35 0.754 2.61 0.817

VAPCNet [6] 5.40 0.521 3.96 0.658 3.02 0.763 2.40 0.829
AnchorFormer [1] 5.89 0.482 4.35 0.655 3.21 0.763 2.60 0.819
Our AEDNet 5.12 0.522 3.75 0.675 2.90 0.770 2.24 0.832

Quantitative comparison. The performance of all methods, measured by CD
loss and F-score@1%, is reported in Tables 1 and 2. Our proposed AEDNet
outperforms all other competitors in terms of CD and F-score@1%. In particular,
our approach shows a substantial improvement, achieving nearly 50% better
performance in the lamp category when compared to VRCNet. We also evaluated
our method against others that support multi-resolution completion, as shown
in Table 3. This comparison is important since our AED module is capable of
performing various levels of down-sampling and up-sampling on point clouds.
In this comparison, AEDNet demonstrated superior performance over all the
compared methods.
Qualitative comparison. Visual comparison, as displayed in Fig. 3, shows that
AEDNet can produce accurate complete shapes than competing methods. The
effectiveness of our AED module is particularly evident in our completed shapes.
For instance, the chair’s missing legs (first row of Fig. 3) are recoverd by refer-
encing the visible legs, taking into account the perspective from which they were
scanned. Moreover, in the second row of Fig. 3, the lamp base is reconstructed
more accurately, resulting in a better-shaped lampstand compared to other meth-
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Fig. 3: Visual comparisons on MVP dataset. Note that, the partial point clouds (2048
points) are sparse and self-occluded, as opposed to the reconstructed and ground truth
point clouds (16,384 points), which are dense and complete.

ods. This achievement is attributed to the embedding-and-disentangling strategy
employed by AEDNet, which efficiently reconstructs complete shapes by learning
structural relations at each up-sampling stage through the AED module.

4.3 Completion on the PCN Dataset

On the PCN dataset, we benchmarked our network against SOTA baseline meth-
ods. The L1 Chamfer Distance served as our metric for evaluation. The baseline
methods’ results of [23,49] were produced from the codes and pre-trained models
provided in their official Github repositories. We gathered results for other meth-
ods from [38,41,43,52] along with their respective original publications [35,47].

Table 4: Quantitative comparison of SOTA methods on the PCN dataset, using L1

Chamfer Distance ×103 as the evaluation metric. Lower L1 Chamfer Distance values
indicate better performance.

Models Avg. airplane cabinet car chair lamp couch table watercraft

AtlasNet [10] 10.58 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61
FoldingNet [45] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99

PCN [48] 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59
TopNet [29] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12
GRNet [43] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04

Wang et al. [34] 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05
PMP-Net [38] 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25

ECG [23] 8.63 5.23 10.12 8.36 9.43 8.53 10.94 7.98 8.16
NSFA [49] 8.32 5.03 10.51 9.11 9.16 7.45 10.46 7.56 7.28

SK-PCN [22] 8.49 5.09 9.98 8.22 9.29 8.39 10.80 7.84 8.02
PoinTr [47] 8.38 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29

SnowflakeNet [24] 7.21 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40
VAPCNet [6] 7.02 4.10 9.28 8.15 7.51 5.55 9.18 6.28 6.10

Anchorformer [1] 6.59 3.70 8.94 7.57 7.05 5.21 8.40 6.03 5.81
Our AEDNet 6.52 3.61 8.90 7.51 7.05 5.15 8.32 5.82 5.74
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Quantitative comparison. The data, presented in Table 4, demonstrate that
our network achieves the lowest average L1 Chamfer Distance (CD). Specifi-
cally, in the chair category, AEDNet displays performance on par with that of
Anchorformer [1]. Across other categories, however, our approach surpasses An-
chorformer. Unlike Anchorformer, which reconstructs the 3D shape from a set
of key points, our proposed method reconstructs the 3D shape by disentangling
the embedding. The key points extracted from the incomplete point clouds typi-
cally establish relationships only with their immediate local neighbourhoods. In
contrast, our embedding strategy establishes connections with all input points,
facilitating a comprehensive understanding of the input partial objects.
Qualitative comparison. Fig. 4 presents the qualitative comparison results.
Our method stands out by predicting shapes with greater accuracy and finer de-
tails. For example, as shown in the second and third rows of Fig. 4, our approach
more effectively restores the complex structures on the wings of the airplane and
the lampshade of the lamp, while the reconstructions from other methods appear
significantly noisier. This highlights our network’s ability in refining the shape
with localized details.

Input PCN GRNet PoinTr Ours GT

Fig. 4: Visual comparisons on PCN dataset. Note that the partial point clouds (2048
points) are sparse and self-occluded, as opposed to the reconstructed and ground truth
point clouds (16,384 points) which are dense and complete.

5 Ablation Study

This section analyzes the performance of the feature extraction, coarse comple-
tion, fine completion and multi view-aware disentanglement modules within our
model, specifically targeting the MVP dataset and working with point clouds
consisting of 2048 points. An additional area of evaluation is the efficacy of the
altered slot attention mechanism in enhancing point cloud completion tasks. To
quantify the performance and improvements brought by these modifications, we
employ CD and F-Score @1% threshold as our evaluation metrics.
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Table 5: Ablation studies for out AED-
Net, examining the contributions of the
Feature Extraction (FE) (Model1), Coarse
Completion (CC) module (Model2), Fine
Completion (FC) module (Model3), and
multiview-aware Disentanglement opera-
tion (Model4) to the overall performance.
‘SPD’ means snowflake point deconvolu-
tion in [41], ‘Emb’ indicates embedding op-
erator, ‘Deconv’ represents deconvolution,
‘CD’ denotes L2 Chamfer Distance (multi-
plied by 104) and ‘F1’ represents F Score
@1%.

Model Description CD ↓ F1 ↑

1 Backbone [41] +CC+ FC 5.38 0.510
2 FE + CC [41] + FC 5.43 0.506
3 FE + CC + SPD [41] 5.54 0.501
4 Emb + Deconv [52] 5.44 0.504
5 Our AEDNet 5.12 0.522

Feature Extraction (FE): In the
encoding phase, our AED module was
used to down-sample the point cloud
and extract features. To validate the
efficiency of our feature extraction
technique, we compared it with the
feature extractor from SnowFlakeNet
[41], hereafter referred to as Model1.
According to the results presented in
Table 5, AEDNet surpasses Model1 in
both CD and F-Score @1%, confirm-
ing the superiority of our feature ex-
traction process for point cloud com-
pletion tasks. This is primarily be-
cause our model is capable of auto-
matically identifying and selecting the
keypoints that are most crucial for the
completion task, unlike the points se-
lected through FPS, as illustrated in
Fig. 5.
Coarse Completion (CC): Previous methods [41,47,48] typically reconstructed
a 3D shape either from a global feature alone or by directly using anchor points
for shape query. Our approach diverges by initially reconstructing a coarse 3D
object through the combination of the global feature and the learned embed-
ding. Subsequently, we employ a differentiable Top-K technique to automat-
ically choose informative points for the up-sampling phase. When comparing
our coarse completion with the one from SnowFlakeNet, denoted as Model2, it
becomes clear that our method significantly boosts performance.
Fine Completion (FC): Traditional point cloud up-sampling methods [10,24,
41, 45, 47, 52] concentrate on generating points using a variety of techniques. To
evaluate the impact of our GAED module, we substituted it with the snowflake
point deconvolution (SPD) [41], referred to as Model3. The comparative results
in Table 5 show that AEDNet outperforms Model3, evidencing the efficiency of
our GAED module in enhancing point cloud generation.
Multiview-aware Disentanglement: We test the effectiveness of our mutli-
view aware disentanglement operator in AED module by replacing it with the

FPS inputOursnoisy-input

Fig. 5: Visualization of Point Cloud Down-sampling Techniques. The figures are or-
dered from left to right: noisy input, FPS down-sampled results, our method (labeled
“Ours”), and the clean input for comparison.
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deconvolution [52], named as embedding and deconvolution module (denoted as
Model4). The comparative results in Table 5 show that multiview-aware dis-
entanglement operator based network (ours) outperforms deconvolution based
network (Model4), evidencing the efficiency of our multiview-aware disentangle-
ment operator in enhancing detailed point cloud upsampling.
Slot Attention Modifications: We examine the effects of altering slot ini-
tialization and fostering slot interactions. To this end, we transitioned from
Gaussian Noise initialization to dictionary mapping initialization. Moreover, we
incorporated self-attention mechanisms within each iteration to facilitate slot
interactions. According to the results presented in Table 6, these adjustments
significantly improve model performance. This improvement suggests that the
modifications to slot attention are effective in better capturing the intricate
structures of 3D objects, highlighting the value of our proposed changes in en-
hancing the model’s ability to understand complex spatial relationships.

6 Conclusion

Table 6: Ablation studies examining the
effect of slot initialization and slot inter-
action. ‘DMI’ represents dictionary map-
ping initialization, ‘CD’ denotes L2 Cham-
fer Distance (multiplied by 104), and ‘F1’
represents F Score @1%.

Model Modifications CD ↓ F1 ↑

i original slot attention 5.45 0.488
ii only DMI 5.34 0.502
iii only slot interaction 5.38 0.510
iv Ours 5.12 0.522

This paper introduced an Adap-
tive Embedding and Disentanglement
Network (AEDNet) for point cloud
completion. The central innovation is
the emphasis on global perception and
local attention as essential compo-
nents for successful point cloud com-
pletion. We refined the original slot
attention mechanism to better achieve
adaptive embedding of complex 3D
structures, focusing on improving how
slots are initialized and interact. We
introduced multi-view information to
disentanglement to observe objects from the outside rather than from within,
resulting in a more comprehensive geometric understanding. The quantity of 3D
points sampled can be changed as needed to allow for flexible sampling. Exper-
iments on both the MVP and PCN datasets validate the performance of the
proposed AEDNet.
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