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A Appendix

A.1 Implementation Details

In this section, we present more implementation details of LiSe.
Pseudo-label Generation (see Section 3.1 in main text). In the LiDAR
branch, for ppScore calculation [10], we set the radius for counting neighboring
points at 0.3 meters. After ppScore calculation, the RANSAC [3] ground removal
algorithm is applied to every LiDAR point cloud. For graph construction, we
set the distance threshold rt at 2 meters. For graph-based clustering, we use
DBSCAN [2] and set parameter ϵ at 0.1 and the samplemin at 10. We convert
nuScenes [1] into KITTI [4] format and primarily consider the front view, where
only pseudo boxes generated in front of the ego car are saved. In the image
branch, GroundingDINO [7] with the SwinB backbone serves as our 2D detector.
We choose a box score threshold of 0.25 and a text score threshold of 0.24.
The text prompt adopted is “car . truck . trailer . bus . bicycle . motorcycle .
pedestrian . cone . barrier . construction vehicle .” Boxes classified as “cone” and
“barrier” are filtered out at the end of the generation process. The version of
Segment-Anything-Model (SAM) [5] is vit_h. For 3D boxes integration, image-
based 3D boxes are filtered based on their depth, which indicates the distance
from the ego car.
Data Processing. For data augmentation, we utilize a random world flip along
the x-axis, a random world rotation with an angle range of (-0.785, 0.785), and
a random world scaling with a scale range of (0.95, 1.05). For data processing,
we apply point sampling to reduce every point cloud to 6144 points in both the
train and test sets. Point shuffling is employed in the train set, but not during
testing. We utilize voxelization for point clouds with voxel sizes of (0.05, 0.05,
0.1), a maximum of 5 points per voxel, and a cap of 16000 voxels on the train
set and 40000 on the test set. In the nuScenes detection task, which includes
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10 classes, we focus on dynamic classes: bicycle, bus, car, construction vehicle,
motorcycle, pedestrian, trailer, and truck, excluding static classes like barrier
and cone. The corresponding camera images have a resolution of 1600 × 900.
Although nuScenes [1] provides nine sweeps of LiDAR point clouds following
each key sample, our experiments solely harness key sample point clouds without
incorporating the sweeps to keep a fair comparison with existing work [10].
Backbone. All experiments are conducted using PointRCNN [9], which adopts
PointNet2 [8] as the backbone for 3D feature extraction. PointRCNN contains
two separate heads for 3D box localization and classification, respectively. Specif-
ically, it includes four set abstraction layers, with point group sizes of 4096, 1024,
256, and 64, along with 4 feature propagation layers. The classification head em-
ploys sigmoid focal classification loss and the regression head adopts weighted
smooth l1 loss.
Training Details. The model is trained for 11 rounds, including one seed train-
ing round and 10 self-paced training rounds. In each training round, the model
undergoes training for 80 epochs, with checkpoints saved every 10 epochs. Each
training round takes approximately 3 hours, culminating in a total runtime of
around 33 hours.

A.2 More Qualitative Results

In Figure 1, we provide additional visualizations illustrating the enhanced per-
formance of our model on distant and small objects. These visualizations further
validate the effectiveness of our proposed integration with 2D scenes, as well as
the adaptive sampling strategy and weak model aggregation. These components
collectively enhance the detection ability on samples which are challenging for
LiDAR-based methods.

A.3 Analysis

Motivation for Distance-Aware Integration (see Section 3.1 in main
text). Considering the LiDAR point density at the close range, LiDAR-based
methods tend to detect nearby objects easily. Meanwhile, image-based meth-
ods are also proficient at identifying objects in the near range since they ex-
hibit evident shape and texture features. Direct integration can lead to exces-
sive and overlapped pseudo-box estimation for nearby objects. We present the
outcomes of directly integrating image-based pseudo-boxes with LiDAR-based
pseudo-boxes in Figure 2. Such an integration strategy raises potential conflicts
between different pseudo boxes and can degrade the final detection performance
of the model.

We thus propose a more advanced distance-aware integration method and
filter out image-based pseudo boxes at close range. More specifically, we conduct
extensive ablation studies on various ranges, such as > 5m, > 10m, and > 15m,
and find that integrating image-based 3D boxes in range > 10m into LiDAR-
based 3D boxes is optimal. It avoids near-range conflicts and maximizes the
utilization of image-based pseudo boxes.
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Fig. 1: Visualization comparison between MODEST [10], OYSTER [11], LiSe (ours),
and ground truth boxes. All results are from the best-performing models. We show
results from 8 different locations and each row represents one location. The overall
results indicate that our model is superior in detecting distant and small objects.
Best viewed in color: green boxes represent ground truth labels, red boxes indicate
predictions, and blue circles highlight differences in predictions.
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Fig. 2: This figure illustrates the issue arising from simply combining LiDAR-based
and image-based pseudo boxes. Both generation methods effectively identify objects
at close range, leading to box redundancy in this area, which often results in conflicts.
Such conflicts can negatively impact model performance. The boxes are best viewed
in color: green boxes represent ground truth labels and red boxes indicate generated
pseudo boxes.

Fig. 3: This figure illustrates the motivation behind our adaptive sampling strategy
(ADS). Panels (a), (b), and (c) depict the distance distributions of ground truth boxes,
initial pseudo boxes of first self-paced learning round, and inference results of model
trained with our adaptive sampling strategy, respectively. Panels (d), (e), and (f) cor-
respond to the volume distributions. A significant distance shift towards near objects
is noticeable when comparing (a) and (b), and a similar volume shift towards large
objects is evident in (d) and (e). Our adaptive sampling strategy effectively mitigates
these shifts, as shown in (c) and (f).
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Fig. 4: Visualization of pseudo boxes and detection results of self-paced learning pro-
cess. LiSe can keep refining box shape and position and recall more objects.

Motivation for Adaptive Sampling Strategy (see Section 3.2 in main
text). We evaluate the distribution of boxes based on unique 3D world attributes
such as distance and volume and identify a pronounced bias towards simpler
samples, such as near and large objects. Such a phenomenon is illustrated in
Figure 3. To address these biases, we devise the adaptive sampling strategy,
which dynamically adjusts the sampling rate for different object groups based
on feedback from model through a self-paced learning process [6]. As depicted in
Figure 3, the adaptive sampling strategy effectively counterbalances these biases.
The efficacy of this approach is further validated by our experiment results.

A.4 Discussion

Why are the initial results of LiSe (T=0) lower than MODEST [10]
and OYSTER [11] (see Table 1 in main text)? For LiSe, we generate
pseudo boxes by integrating data from both LiDAR and image modalities. This
integration brings the noise from both modalities, potentially lowering the accu-
racy of the boxes compared to those solely based on LiDAR. On the other hand,
image-based pseudo boxes complement LiDAR-based ones, particularly for dis-
tant and small objects, enhancing the overall diversity of the pseudo labels. This
diversity explains why LiSe initially lags behind MODEST and OYSTER but
continuously improves in subsequent training rounds, while MODEST and OYS-
TER peak early and then degrade. Ultimately, LiSe significantly outperforms
these models.
Why does not experiment consider static classes, such as “Cone” and
“Barrier”? The competitive LiDAR-based methods, e.g ., MODEST [10], can
only detect dynamic objects according to the position movements. In the experi-
ments, we exclude static object classes like cone and barrier for a fair comparison.
It is worth noting that our proposed integration with 2D scenes can enable the
detection of static objects by adding image-based pseudo boxes of static classes
into the initial training labels.

A.5 Pseudo boxes quality

Initial pseudo boxes are not very accurate. Our method can continuously re-
fine the shape and location of its detection and recall more objects during self-
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training process (see Figure 4). In the end, our model predictions are much more
accurate than the initial labels.
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