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1 More Results

1.1 Text Splitting.

The Category Score Distillation Sampling (CSDS) requires splitting the input
text prompts into individual objects. We employ GPT-4 for this purpose, a
method commonly used and effective for information extraction [5]. We empir-
ically found that GPT-4 has the ability to split very complex text prompts, as
shown in Figure 1.

Fig. 1: Text splitting.

1.2 Applications on texture editing

We provide more results on text-guided texture editing, as shown in Figure 2.
It can be observed that our method offers greater controllability compared to
TEXTure [3].

1.3 Limitations

DreamDissector is likely to fail when objects are in very close contact, such as
the body and clothing. We present two examples of this failure in the figure
below. The primary reason is the challenge of obtaining clean NeCFs for such
complex interactions.
⋆ Corresponding Author.
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Fig. 2: Text-guided texture editing.

Fig. 3: Failure cases.

Fig. 4: Qualitative results based on MVDream [4].



DreamDissector 3

1.4 Results on MVDream

We adopt Dreamfusion [2] as the backbone method for generating the initial
text-to-3D NeRF for our main results. To verify the versatility of DreamDis-
sector against different backbone methods, we employ MVDream [4], a recently
proposed text-to-3D method, as the backbone. Results are shown in Figure 4.
It can be observed that DreamDissector successfully dissects MVDream and
produces independent textured meshes with improved geometries and textures.

1.5 Results on disentangled text-to-3D generation

We present additional results on disentangled text-to-3D generation, including
those featured in the main paper. These results and text prompts are depicted
in Figure 5, 6 and 7.

1.6 Comparisons with the baselines

Additional comparisons are shown in Figure 8. It should be noted that negative
prompting baseline, being intended to generate independent objects, does not
associate with composed objects. Therefore, we regard the entire NeRF as the
composed object. We also show the results of a text-guided scene generation
method, Set-the-Scene [1], shown in Figure 9. These results illustrate the superior
performance of our method.
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Fig. 5: Qualitative results based on Dreamfusion [2].
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Fig. 6: Qualitative results based on Dreamfusion [2].
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Fig. 7: Qualitative results based on Dreamfusion [2].
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Fig. 8: Comparison with baseline methods.
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Fig. 9: Results on Set-the-Scene. We show the results on set-the-scene. It can be
observed that set-the-scene struggles to model the object-interected scenes.
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