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Abstract. In this study, we delve into the generation of high-resolution
images from pre-trained diffusion models, addressing persistent chal-
lenges, such as repetitive patterns and structural distortions, that emerge
when models are applied beyond their trained resolutions. To address this
issue, we introduce an innovative, training-free approach FouriScale from
the perspective of frequency domain analysis. We replace the original
convolutional layers in pre-trained diffusion models by incorporating a
dilation technique along with a low-pass operation, intending to achieve
structural consistency and scale consistency across resolutions, respec-
tively. Further enhanced by a padding-then-crop strategy, our method
can flexibly handle text-to-image generation of various aspect ratios. By
using the FouriScale as guidance, our method successfully balances the
structural integrity and fidelity of generated images, achieving arbitrary-
size, high-resolution, and high-quality generation. With its simplicity and
compatibility, our method can provide valuable insights for future explo-
rations into the synthesis of ultra-high-resolution images. The source
code is available at https://github.com/LeonHLJ/FouriScale.
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1 Introduction

Recently, Diffusion models [18,34] have emerged as the predominant generative
models, surpassing the popularity of GANs [12] and autoregressive models [9,31].
Some text-to-image generation models, which are based on diffusion models, such
as Stable Diffusion (SD) [34], Stable Diffusion XL (SDXL) [30], Midjourney [27],
and Imagen [35], have shown their astonishing capacity to generate high-quality
and fidelity images under the guidance of text prompts. To ensure efficient pro-
cessing on existing hardware and stable model training, these models are typi-
cally trained at one or a few specific image resolutions. For instance, SD models
are often trained using images of 512 × 512 resolution, while SDXL models are
typically trained with images close to 1024× 1024 pixels.
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Fig. 1: Visualization of pattern repetition issue of high-resolution image synthesis
(2048×2048) using SDXL [30]. Attn-Entro [23] fails to address this problem and Scale-
Crafter [14] still struggles with this issue in image details. Our method successfully
handles this problem and generates high-quality images without model retraining.

However, as shown in Fig. 1, directly employing pre-trained diffusion mod-
els to generate an image at a higher resolution will lead to repetitive patterns
and unforeseen artifacts. Some studies [2,22,24] have attempted to create larger
images by utilizing pre-trained diffusion models to stitch together overlapping
patches into a panoramic image. Nonetheless, the absence of a global direction
for the whole image restricts their ability to generate images focused on specific
objects and fails to address the issue of repetitive patterns. [23] has explored
adapting pre-trained diffusion models for generating images of various sizes by
examining attention entropy. Nevertheless, ScaleCrafter [14] found that the key
point of generating high-resolution images lies in the convolution layers. They
introduce a re-dilation operation and a convolution disperse operation to enlarge
kernel sizes of convolution layers, largely mitigating the problem. However, their
conclusion stems from empirical findings, lacking a deeper exploration of this
issue. Additionally, it needs an initial offline computation of a linear transforma-
tion between the original convolutional kernel and the enlarged kernel, falling
short in terms of compatibility and scalability when there are variations in the
kernel sizes of the UNet and the desired target resolution of images.

In this work, we present FouriScale, an innovative and effective approach that
handles the issue through the perspective of frequency domain analysis, suc-
cessfully demonstrating its effectiveness through both theoretical analysis and
experimental results. FouriScale substitutes the original convolutional layers in
pre-trained diffusion models by simply introducing a dilation operation coupled
with a low-pass operation, aimed at achieving structural and scale consistency
across resolutions, respectively. Equipped with a padding-then-crop strategy, our
method allows for flexible text-to-image generation of different sizes and aspect
ratios. Furthermore, by utilizing FouriScale as guidance, our approach attains
remarkable capability in producing high-resolution images of any size, with inte-
grated image structure alongside superior quality. The simplicity of FouriScale
eliminates the need for any offline pre-computation, facilitating compatibility
and scalability. We envision FouriScale providing significant contributions to the
advancement of ultra-high-resolution image synthesis in future research.
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2 Related Work

2.1 Text-to-Image Synthesis

Text-to-image synthesis [7, 19,34,35] has seen a significant surge in interest due
to the development of diffusion probabilistic models [18, 38]. These innovative
models generate data from a Gaussian distribution and refine it through a de-
noising process. With their capacity for high-quality generation, they have made
significant leaps over traditional models like GANs [7, 12]. The Latent Diffu-
sion Model (LDM) [34] integrates the diffusion process within a latent space,
achieving astonishing results in the generation of realistic images, which boosts
significant interest in the domain of generating via latent space [4,15,25,29,42].
These models are typically trained at one or a few specific image resolutions
to ensure efficient processing on existing hardware and stable model training.
For instance, Stabe Diffusion (SD) [34] is trained using 512× 512 pixel images,
while SDXL [30] models are typically trained with images close to 1024 × 1024
resolution, accommodating various aspect ratios simultaneously.

2.2 High-Resolution Synthesis via Diffusion Models

High-resolution synthesis has always received widespread attention. Prior works
mainly focus on refining the noise schedule [6, 21], developing cascaded ar-
chitectures [19, 35, 39] or mixtures-of-denoising-experts [1] for generating high-
resolution images. Despite their impressive capabilities, diffusion models were
often limited by specific resolution constraints. Some methods have tried to
address these issues by accommodating a broader range of resolutions. For ex-
ample, Any-size Diffusion [46] fine-tunes a pre-trained SD on a set of images
with a fixed range of aspect ratios, similar to SDXL [30]. FiT [26] views the
image as a sequence of tokens and adaptively padding image tokens to a pre-
defined maximum token limit, ensuring hardware-friendly training and flexible
resolution handling. However, these models require model training, overlooking
the inherent capability of the pre-trained models to handle image generation
with varying resolutions. Most recently, some methods [2,22,24] have attempted
to generate panoramic images by utilizing pre-trained diffusion models to stitch
together overlapping patches. [23] has explored adapting pre-trained diffusion
models for generating images of various sizes by examining attention entropy.
ElasticDiff [13] uses default resolution to guide the generation of arbitrary-size
images. DemoFusion [10] adapts a cascaded fashion with a strategy of low- and
high-resolution fusion to maintain global consistency. Recently, ScaleCrafter [14]
finds that the key point lies in convolution layers. They present a re-dilation
and a convolution disperse operation to expand convolution kernel sizes, which
requires an offline calculation of a linear transformation from the original con-
volutional kernel to the expanded one. In contrast, we deeply investigate the
issue of repetitive patterns and handle it through the perspective of frequency
domain analysis. The simplicity of our method eliminates the need for any offline
pre-computation, facilitating its compatibility and scalability.
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Fig. 2: The overview of FouriScale (orange line), which includes a dilation convolution
operation (Sec. 3.2) and a low-pass filtering operation (Sec. 3.3) to achieve structural
consistency and scale consistency across resolutions, respectively.

3 Method

Diffusion models, also known as score-based generative models [18, 38], belong
to a category of generative models that follow a process of progressively intro-
ducing Gaussian noise into the data and subsequently generating samples from
this noise through a reverse denoising procedure. The key denoising step is typ-
ically carried out by a U-shaped Network (UNet), which learns the underlying
denoising function that maps from noisy data to its clean counterpart. The UNet
architecture, widely adopted for this purpose, comprises stacked convolution lay-
ers, self-attention layers, and cross-attention layers. Some previous works have
explored the degradation of performance when the generated resolution becomes
larger, attributing to the change of the attention tokens’ number [23] and the
reduced relative receptive field of convolution layers [14]. Based on empirical
evidence in [14], convolutional layers are more sensitive to changes in resolu-
tion. Therefore, we primarily focus on studying the impact brought about by
the convolutional layers. In this section, we will introduce FouriScale, as shown
in Fig. 2. It includes a dilation convolution operation (Sec. 3.2) and a low-pass
filtering operation (Sec. 3.3) to achieve structural consistency and scale consis-
tency across resolutions, respectively. With the tailored padding-then-cropping
strategy (Sec. 3.4), FouriScale can generate images of arbitrary aspect ratios.
By utilizing FouriScale as guidance (Sec. 3.5), our approach attains remarkable
capability in generating high-resolution and high-quality images.

3.1 Notation

2D Discrete Fourier Transform (2D DFT). Given a two-dimensional discrete
signal F (m,n) with dimensions M × N , the two-dimensional discrete Fourier
transform (2D DFT) is defined as:

F (p, q) =
1

MN

M−1∑
m=0

N−1∑
n=0

F (m,n)e−j2π( pm
M + qn

N ). (1)

2D Dilated Convolution. A dilated convolution kernel of the kernel k(m,n),
denoted as kdh,dw

(m,n), is formed by introducing zeros between the elements of
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the original kernel such that:

kdh,dw
(m,n) =

{
k(m

dh
, n
dw

) if m% dh = 0 and n% dw = 0,

0 otherwise,
(2)

where dh, dw is the dilation factor along height and width, respectively, m and
n are the indices in the dilated space. The % represents the modulo operation.

3.2 Structural Consistency via Dilated Convolution

The diffusion model’s denoising network, denoted as ϵθ, is generally trained on
images or latent spaces at a specific resolution of h × w. This network is often
constructed using a U-Net architecture. Our target is to generate an image of
a larger resolution of H × W at the inference stage using the parameters of
denoising network ϵθ without retraining.

As previously discussed, the convolutional layers within the U-Net are largely
responsible for the occurrence of pattern repetition when the inference resolution
becomes larger. To prevent structural distortion at the inference resolution, we
resort to establishing structural consistency between the low resolution and high
resolution, as shown in Fig. 2. In particular, for a convolutional layer Convk in
the UNet with its convolution kernel k, and the high-resolution input feature
map F , the structural consistency can be formulated as follows:

Downs(F )⊛ k = Downs(F ⊛ k′), (3)

where Downs denotes the down-sampling operation with scale s1, and ⊛ rep-
resents the convolution operation. This equation implies the need to customize
a new convolution kernel k′ for a larger resolution. However, finding an ap-
propriate k′ can be challenging due to the variety of feature map F . The recent
ScaleCrafter [14] method uses structure-level and pixel-level calibrations to learn
a linear transformation between k and k′, but learning a new transformation for
each new kernel size and new target resolution can be cumbersome.

In this work, we propose to handle the structural consistency from a frequency
perspective. Suppose the input F (x, y), which is a two-dimensional discrete spa-
tial signal, belongs to the set RHf×Wf×C . The sampling rates along the x and y
axes are given by Ωx and Ωy correspondingly. The Fourier transform of F (x, y)
is represented by F (u, v) ∈ RHf×Wf×C . In this context, the highest frequencies
along the u and v axes are denoted as umax and vmax, respectively. Additionally,
the Fourier transform of the downsampled feature map Downs(F (x, y)), which
is dimensionally reduced to R

Hf
s ×

Wf
s ×C , is denoted as F ′(u, v).

Theorem 1. Spatial down-sampling leads to a reduction in the range of fre-
quencies that the signal can accommodate, particularly at the higher end of the
1 For simplicity, we assume equal down-sampling scales for height and width. Our

method can also accommodate different down-sampling scales in this context through
our padding-then-cropping strategy (Section 3.4).
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Fig. 3: We visualize a random 5× 5 kernel for better visualization. The Fourier spec-
trum of its dilated kernel, with a dilation factor of 4, clearly demonstrates a periodic
character. It should be noted that we also pad zeros to the right and bottom sides
of the dilated kernel, which differs from the conventional use. However, this does not
impact the outcome in practical applications.

spectrum. This process causes high frequencies to be folded to low frequencies, and
superpose onto the original low frequencies. For a one-dimensional signal, in the
condition of s strides, this superposition of high and low frequencies resulting
from down-sampling can be mathematically formulated as

F ′(u) = S(F (u), F

(
u+

aΩx

s

)
) | u ∈

(
0,

Ωx

s

)
, (4)

where S dentes the superposing operator, Ωx is the sampling rates in x axis, and
a = 1, . . . , s− 1.

Lemma 1. For an image, the operation of spatial down-sampling using strides
of s can be viewed as partitioning the Fourier spectrum into s× s equal patches
and then uniformly superimposing these patches with an average scaling of 1

s2 .

DFT (Downs(F (x, y))) =
1

s2

s−1∑
i=0

s−1∑
j=0

F(i,j)(u, v), (5)

where F(i,j)(u, v) is a sub-matrix of F (u, v) by equally splitting F (u, v) into s×s
non-overlapped patches and i, j ∈ {0, 1, . . . , s− 1}.

The proof of Theorem 1 and Lemma 1 are provided in the supplementary
material. They describe the shuffling and superposing [32,43,47] in the frequency
domain imposed by spatial down-sampling. If we transform Eq. (3) to the fre-
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quency domain and follow conclusion in Lemma 1, we can obtain: 1

s2

s−1∑
i=0

s−1∑
j=0

F(i,j)(u, v)

⊙ k(u, v)← Left side of Eq. (3)

=
1

s2

s−1∑
i=0

s−1∑
j=0

(
F(i,j)(u, v)⊙ k(u, v)

)
(6)

=
1

s2

s−1∑
i=0

s−1∑
j=0

(
F(i,j)(u, v)⊙ k′(i,j)(u, v)

)
,← Right side of Eq. (3)

where k(u, v), k′(u, v) denote the fourier transform of kernel k and k′, respec-
tively, ⊙ is element-wise multiplication. Eq. (6) suggests that the Fourier spec-
trum of the ideal convolution kernel k′ should be the one that is stitched by s×s
Fourier spectrum of the convolution kernel k. In other words, there should be
a periodic repetition in the Fourier spectrum of k′, the repetitive pattern is the
Fourier spectrum of k.

Fortunately, the widely used dilated convolution perfectly meets this require-
ment. Suppose a kernel k(m,n) with the size of M × N , it’s dilated version is
kdh,dw

(m,n), with dilation factor of (dh, dw). For any integer multiples of dh,
namely p′ = pdh and integer multiples of dw, namely q′ = qdw, the exponential
term of the dilated kernel in the 2D DFT (Eq. (1)) becomes:

e
−j2π

(
p′m
dhM + q′n

dwN

)
= e−j2π( pm

M + qn
N ), (7)

which is periodic with a period of M along the m-dimension and a period of
N along the n-dimension. It indicates that a dilated convolution kernel parame-
terized by the original kernel k, with dilation factor of (H/h,W/w), is the ideal
convolution kernel k′. In Fig. 3, we visually demonstrate the periodic repetition
of dilated convolution. We noticed that [14] also uses dilated operation. In con-
trast to [14], which is from empirical observation, our work begins with a focus
on frequency analysis and provides theoretical justification for its effectiveness.

3.3 Scale Consistency via Low-pass Filtering

However, in practice, dilated convolution alone cannot well mitigate the issue of
pattern repetition. As shown in Fig. 4a (top left), the issue of pattern repetition
is significantly reduced, but certain fine details, like the horse’s legs, still present
issues. This phenomenon is because of the aliasing effect after the spatial down-
sampling, which raises the distribution gap between the features of low resolution
and the features down-sampled from high resolution, as presented in Fig. 4b.
Aliasing alters the fundamental frequency components of the original signal,
breaking its consistency across scales.

Here, we introduce a low-pass filtering operation, or spectral pooling [33] to
remove high-frequency components that might cause aliasing, intending to con-
struct scale consistency among resolutions. Let F (m,n) be a two-dimensional
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Fig. 4: (a) Visual comparisons between the images created at a resolution of 2048 ×
2048: with only the dilated convolution, and with both the dilated convolution and the
low-pass filtering. (b)(c) Fourier relative log amplitudes of input features from three
distinct layers from the down blocks, mid blocks, and up blocks of UNet, respectively,
are analyzed. We also include features at reverse steps 1, 25, and 50. (b) Without the
application of the low-pass filter. There is an evident distribution gap of the frequency
spectrum between the low- and high-resolution. (c) With the application of the low-
pass filter. The distribution gap is largely reduced.

discrete signal of resolution M ×N . Spatial down-sampling of F (m,n), by fac-
tors sh and sw along the height and width respectively, alters the Nyquist limits
to M/(2sh) and N/(2sw) in the frequency domain, corresponding to half the
new sampling rates along each dimension. The expected low-pass filter should
remove frequencies above these new Nyquist limits to prevent aliasing. There-
fore, the optimal mask size (assuming the frequency spectrum is centralized)
for passing low frequencies is M/sh × N/sw. It ensures the preservation of all
valuable frequencies within the downscaled resolution while preventing aliasing.

As illustrated in Fig. 4c, the application of the low-pass filter results in a
closer alignment of the frequency distribution between high and low resolutions.
This ensures that the left side of Eq. (3) produces a plausible image structure.
Additionally, since our target is to rectify the image structure, low-pass filtering
would not be harmful because it generally preserves the structural information of
a signal, which predominantly resides in the lower frequency components [28,44].

Subsequently, the final kernel k∗ is obtained by applying low-pass filtering to
the dilated kernel. Given the periodic nature of the Fourier spectrum of the di-
lated kernel, the Fourier spectrum of the new kernel k∗ is obtained by expanding
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(a) w/o padding-then-cropping (b) w padding-then-cropping

“A car in a garden, with a lake and Eiffel Tower”

Fig. 5: Visual comparisons between the images generated at a resolution of 2048×1024
by SD 2.1: (a) without the application of padding-then-cropping strategy, and (b) with
the application of padding-then-cropping strategy.

the original kernel k’s spectrum with zero frequencies. Therefore, this expansion
avoids introducing new frequency components into the new kernel k∗. In prac-
tice, we do not directly calculate the kernel k∗ but replace the original Convk
with the following equivalent operation to ensure computational efficiency:

Convk(F )→ Convk′(iDFT(H ⊙DFT(F )), (8)

where H denotes the low-pass filter. Fig. 4a (bottom left) shows that the combi-
nation of dilated convolution and low-pass filtering resolves pattern repetition.

3.4 Adaption to Arbitrary-size Generation

The derived conclusion applies only when the high-resolution and low-resolution
images have identical aspect ratios. From Eq. (5) and Eq. (6), it becomes appar-
ent that when the aspect ratios vary, meaning the dilation rates along the height
and width are different, the well-constructed structure in the low-resolution im-
age would be distorted and compressed, as shown in Fig. 5 (a). However, in
real-world applications, the ideal scenario is for a pre-trained diffusion model to
generate arbitrary-sized images.

We introduce a straightforward yet efficient approach, termed padding-then-
cropping, to solve this problem. Fig. 5 (b) demonstrates its effectiveness. In
essence, when a layer receives an input feature at a standard resolution of hf×wf ,
and this input feature increases to a size of Hf ×Wf during inference, our first
step is to zero-pad the input feature to a size of rhf × rwf . Here, r is defined
as the maximum of ⌈Hf

hf
⌉ and ⌈Wf

wf
⌉, with ⌈·⌉ representing the ceiling operation.

The padding operation assumes that we aim to generate an image of size rh×rw,
where certain areas are filled with zeros. Subsequently, we apply Eq. (8) to rectify
the issue of repetitive patterns in the higher-resolution output. Ultimately, the
obtained feature is cropped to restore its intended spatial size. This step is
necessary to not only negate the effects of zero-padding but also control the
computational demands when the resolution increases, particularly those arising
from the self-attention layers in the UNet architecture. Taking computational
efficiency into account, our equivalent solution is outlined in Algorithm 1.
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Algorithm 1 Pseudo-code of FouriScale

Data: Input: F ∈ RC×Hf×Wf . Original size: hf × wf .
Result: Output: Fconv ∈ RC×Hf×Wf

r = max(⌈Hf

hf
⌉, ⌈Wf

wf
⌉)

Fpad ← Zero-Pad(F ) ∈ RC×rhf×rwf ▷ Zero Padding
Fdft ← DFT(Fpad) ∈ CC×rhf×rwf ▷ Discrete Fourier transform
Flow ← H ⊙ Fdft ▷ Low pass filtering
Fidft ← iDFT(Flow) ▷ Inverse Fourier transform
Fcrop ← Crop(Fidft) ∈ RR×Hf×Wf ▷ Cropping
Fconv ← Convk′(Fcrop) ▷ Dilation factor of k′ is r

3.5 FouriScale Guidance

FouriScale effectively mitigates structural distortion. However, it would intro-
duce certain artifacts and unforeseen patterns in the background, as depicted in
Fig. 6 (b). We identify that the main issue stems from the application of low-
pass filtering when generating the conditional estimation in classifier-free guid-
ance [20], which leads to a ringing effect and loss of detail. To improve image
quality and reduce artifacts, as shown in Fig. 6 (a), we develop a guided ver-
sion of FouriScale for reference, aiming to align the output, rich in details, with
it. Specifically, beyond the unconditional and conditional estimations from the
FouriScale-modified UNet, we generate an extra conditional estimation. This one
is subjected to identical dilated convolutions but utilizes milder low-pass filters
to accommodate more frequencies. We substitute its attention maps of attention
layers with those from the conditional estimation processed through FouriScale,
in a similar spirit with image editing [5,11,16]. This strategy allows for the incor-
poration of correct structural information [40,41,45] derived from FouriScale to
guide the generation, simultaneously mitigating the decline in image quality and
loss of details. The final noise estimation is determined using both the uncon-
ditional and the newly conditional estimations following classifier-free guidance.
As we can see in Fig. 6 (c), the aforementioned issues are largely mitigated.

3.6 Detailed Designs

Annealing dilation and filtering. Since the image structure is primarily outlined
in the early reverse steps, the subsequent steps focus on enhancing the details,
we implement an annealing approach for both dilation convolution and low-pass
filtering. Initially, for the first Sinit steps, we employ the ideal dilation convolu-
tion and low-pass filtering. During the span from Sinit to Sstop, we progressively
decrease the dilation factor and r (as detailed in Algorithm 1) down to 1. After
Sstop steps, the original UNet is utilized to refine image details further.
Settings for SDXL. For Stable Diffusion XL [30] (SDXL), our observations re-
veal that using an ideal low-pass filter leads to suboptimal outcomes. Instead, a
gentler low-pass filter, which modulates rather than completely eliminates high-
frequency elements using a coefficient σ ∈ [0, 1] (set to 0.6 in our method) delivers
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(a) Overview of FouriScale Guidance

(b) w/o FouriScale Guidance (c) w FouriScale Guidance

Fig. 6: (a) Overview of FouriScale guidance. CFG denotes Classifier-Free Guidance.
(b)(c) Visual comparisons between the images created at 2048 × 2048 by SD 2.1: (b)
without the application of FouriScale guidance, ➊ has unexpected artifacts in the back-
ground, ➋➌ are wrong details, (c) with the application of FouriScale guidance.

superior visual quality. This phenomenon can be attributed to SDXL’s ability
to handle changes in scale effectively, negating the need for an ideal low-pass fil-
ter to maintain scale consistency, which confirms the rationale of incorporating
low-pass filtering to address scale variability. For SDXL, we calculate the scale
factor r (refer to Algorithm 1) by determining the training resolution whose
aspect ratio is closest to the one of target resolution.

4 Experiments

Experimental setup. Wo follow [14] to report results on three text-to-image mod-
els, including SD 1.5 [11], SD 2.1 [8], and SDXL 1.0 [30]. The tested resolutions
are 4×, 6.25×, 8×, and 16× the pixel count of their respective training reso-
lutions. For both SD 1.5 and SD 2.1 models, the training resolution is set at
512×512 pixels, while the inference resolutions are 10242, 12802, 2048×1024,
and 20482. For SDXL, it is trained at resolutions close to 10242 pixels, with
the higher inference resolutions being 20482, 25602, 4096×2048, and 40962. We
default use FreeU [37] in all experimental settings.
Testing dataset and evaluation metrics. Following [14], we assess performance
using the Laion-5B dataset [36], which comprises 5 billion pairs of images and
their corresponding captions. For tests conducted at an inference resolution of
1024×1024, we select a subset of 30,000 images, each paired with randomly
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Table 1: Quantitative comparisons among training-free methods. The best and second
best results are highlighted in bold and underline. KIDr and KIDb are scaled by 102.

Resolution Method SD 1.5 SD 2.1 SDXL 1.0

FIDr↓ KIDr↓ FIDb↓ KIDb↓ FIDr↓ KIDr↓ FIDb↓ KIDb↓ FIDr↓ KIDr↓ FIDb↓ KIDb↓

4× 1:1

Vanilla 26.96 1.00 15.72 0.42 29.90 1.11 19.21 0.54 49.81 1.84 32.90 0.92
Attn-Entro 26.78 0.97 15.64 0.42 29.65 1.10 19.17 0.54 49.72 1.84 32.86 0.92
ScaleCrafter 23.90 0.95 11.83 0.32 25.19 0.98 13.88 0.40 49.46 1.73 36.22 1.07

Ours 23.62 0.92 10.62 0.29 25.17 0.98 13.57 0.40 33.89 1.21 20.10 0.47

6.25× 1:1

Vanilla 41.04 1.28 31.47 0.77 45.81 1.52 37.80 1.04 68.87 2.79 54.34 1.92
Attn-Entro 40.69 1.31 31.25 0.76 45.77 1.51 37.75 1.04 68.50 2.76 54.07 1.91
ScaleCrafter 37.71 1.34 25.54 0.67 35.13 1.14 23.68 0.57 55.03 2.02 45.58 1.49

Ours 30.27 1.00 16.71 0.34 30.82 1.01 18.34 0.42 44.13 1.64 37.09 1.16

8× 1:2

Vanilla 50.91 1.87 44.65 1.45 57.80 2.26 51.97 1.81 90.23 4.20 79.32 3.42
Attn-Entro 50.72 1.86 44.49 1.44 57.42 2.26 51.67 1.80 89.87 4.15 79.00 3.40
ScaleCrafter 35.11 1.22 29.51 0.81 41.72 1.42 35.08 1.01 106.57 5.15 108.67 5.23

Ours 35.04 1.19 26.55 0.72 37.19 1.29 27.69 0.74 71.77 2.79 70.70 2.65

16× 1:1

Vanilla 67.90 2.37 66.49 2.18 84.01 3.28 82.25 3.05 116.40 5.45 109.19 4.84
Attn-Entro 67.45 2.35 66.16 2.17 83.68 3.30 81.98 3.04 113.25 5.44 106.34 4.81
ScaleCrafter 32.00 1.01 27.08 0.71 40.91 1.32 33.23 0.90 84.58 3.53 85.91 3.39

Ours 30.84 0.95 23.29 0.57 39.49 1.27 28.14 0.73 56.66 2.18 49.59 1.63

chosen text prompts from the dataset. Given the substantial computational de-
mands, our sample size is reduced to 10,000 images for tests at inference resolu-
tions exceeding 1024×1024. We evaluate the quality and diversity of the gener-
ated images by measuring the Frechet Inception Distance (FID) [17] and Kernel
Inception Distance (KID) [3] between generated images and real images, denoted
as FIDr and KIDr. To show the methods’ capacity to preserve the pre-trained
model’s original ability at a new resolution, we also follow [14] to evaluate the
metrics between the generated images at the base training resolution and the
inference resolution, denoted as FIDb and KIDb.

4.1 Quantitative Results

We compare our method with the vanilla text-to-image diffusion model (Vanilla),
the training-free approach [23] (Attn-Entro) that accounts for variations in atten-
tion entropy, and ScaleCrafter [14], which modifies convolution kernels through
re-dilation and linear transformation. We show the experimental results in Tab. 1.
Compared to the vanilla diffusion models, our method obtains much better re-
sults. Attn-Entro fails at high resolutions due to ignoring cross-resolution struc-
tural consistency. Due to the absence of scale consistency, ScaleCrafter performs
worse than our method on the majority of metrics. Additionally, we observe that
ScaleCrafter often struggles to produce acceptable images for SDXL. Conversely,
our method can generate images with plausible structures and rich details at var-
ious high resolutions, compatible with any pre-trained diffusion models

Besides, our method achieves better inference speed than ScaleCrafter [14].
Under the 16× setting for SDXL, ScaleCrafter takes 577 seconds per image,
while our method averages 540 seconds on a single NVIDIA A100 GPU.
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Fig. 7: Visual comparisons between ➊ ours, ➋ ScaleCrafter [14] and ➌ Attn-Entro [23],
under settings of 4×, 8×, and 16×, employing three pre-trained diffusion models.

4.2 Qualitative Results

Fig. 7 presents a comprehensive visual comparison across various upscaling fac-
tors (4×, 8×, and 16×) with different pre-trained diffusion models. Our method
demonstrates superior performance in preserving structural integrity and fidelity
compared to ScaleCrafter [14] and Attn-Entro [23]. At 4× upscaling, FouriScale
faithfully reconstructs fine details. In contrast, ScaleCrafter and Attn-Entro of-
ten exhibit blurring and loss of details. As we move to more extreme 8× and 16×
upscaling factors, the advantages of FouriScale become even more pronounced.
Our method consistently generates images with coherent global structures and
locally consistent textures across diverse subjects. The compared methods still
struggle with repetitive artifacts and distorted shapes.

4.3 Ablation Study

To validate the contributions of each component in our proposed method, we
conduct ablation studies on the SD 2.1 model generating 2048× 2048 images.
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Method FIDr

FouriScale 39.49
w/o guidance 43.75
w/o guidance & filtering 46.74

Table 2: Ablation studies on
FouriScale components on SD 2.1
model under 16× 1:1 setting.

Mask Size: Mask Size: Mask Size:

“A tall giraffe in a zoo eating branches”

𝑀/2×𝑁/2 𝑀/4×𝑁/4 (Ours) 𝑀/6×𝑁/6

Fig. 8: Comparison of mask sizes for passing low
frequencies generating 20482 images by SD 2.1. M ,
N denote height and width of target resolution.

First, we analyze the effect of using FouriScale Guidance as described in
Sec. 3.5. We compare the default FouriScale which utilizes guidance versus re-
moving the guidance and solely relying on the conditional estimation from the
FouriScale-modified UNet. As shown in Tab. 2, employing guidance improves the
FIDr by 4.26, demonstrating its benefits for enhancing image quality. The guid-
ance allows incorporating structural information from the FouriScale-processed
estimation to guide the generation. This balances between maintaining structural
integrity and preventing loss of details.

Furthermore, we analyze the effect of the low-pass filtering operation de-
scribed in Sec. 3.3. Using the FouriScale without guidance as the baseline, we
additionally remove the low-pass filtering from all modules. As shown in Tab. 2,
this further deteriorates the FIDr to 46.74. The low-pass filtering is crucial for
maintaining scale consistency across resolutions and preventing aliasing effects
that introduce distortions. Without it, the image quality degrades significantly.

A visual result of comparing the mask sizes for passing low frequencies is
depicted in Fig. 8. The experiment utilizes SD 2.1 (trained with 512×512 images)
to generate images of 2048×2048 pixels, setting the default mask size to M/4×
N/4. We can find that the optimal visual result is achieved with our default
settings. As the low-pass filter changes, there is an evident deterioration in the
visual appearance of details, which underscores the validity of our method.

5 Conclusion and Limitation

We present FouriScale, a novel approach that enhances the generation of high-
resolution images from pre-trained diffusion models. To address challenges such
as repetitive patterns and structural distortions, FouriScale introduces a dilation
operation and a low-pass filtering operation to improve structural and scale
consistency among resolutions from the frequency perspective. Incorporating a
padding-then-cropping strategy and FouriScale guidance further enhances the
flexibility and quality of high-resolution generation, accommodating different
aspect ratios while maintaining structural integrity and image fidelity. However,
FouriScale still struggles with generating ultra-high-resolution samples, which
typically exhibit unintended artifacts. Besides, its focus on operations within
convolutions limits its applicability to purely transformer-based diffusion models.



FouriScale 15

Acknowledgement

This project is funded in part by National Key R&D Program of China Project
2022ZD0161100, by the Centre for Perceptual and Interactive Intelligence (CPII)
Ltd under the Innovation and Technology Commission (ITC)’s InnoHK, by
Smart Traffic Fund PSRI/76/2311/PR, by RGC General Research Fund Project
14204021. Hongsheng Li is a PI of CPII under the InnoHK.

References

1. Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Kreis, K., Aittala, M., Aila,
T., Laine, S., Catanzaro, B., et al.: ediffi: Text-to-image diffusion models with an
ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022)

2. Bar-Tal, O., Yariv, L., Lipman, Y., Dekel, T.: Multidiffusion: Fusing diffusion paths
for controlled image generation. arXiv preprint arXiv:2302.08113 (2023)

3. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans.
In: International Conference on Learning Representations (2018)

4. Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S.W., Fidler, S., Kreis,
K.: Align your latents: High-resolution video synthesis with latent diffusion models.
In: CVPR. pp. 22563–22575 (2023)

5. Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., Zheng, Y.: Masactrl: Tuning-free mu-
tual self-attention control for consistent image synthesis and editing. arXiv preprint
arXiv:2304.08465 (2023)

6. Chen, T.: On the importance of noise scheduling for diffusion models. arXiv
preprint arXiv:2301.10972 (2023)

7. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. NeurIPS
34, 8780–8794 (2021)

8. Diffusion, S.: Stable diffusion 2-1 base. https://huggingface.co/stabilityai/
stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned.ckpt (2022)

9. Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin, D., Lin, J., Zou, X., Shao,
Z., Yang, H., et al.: Cogview: Mastering text-to-image generation via transformers.
NeurIPS 34, 19822–19835 (2021)

10. Du, R., Chang, D., Hospedales, T., Song, Y.Z., Ma, Z.: Demofusion: Democratising
high-resolution image generation with no $$$. In: CVPR. pp. 6159–6168 (2024)

11. Epstein, D., Jabri, A., Poole, B., Efros, A.A., Holynski, A.: Diffusion self-guidance
for controllable image generation. arXiv preprint arXiv:2306.00986 (2023)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. NeurIPS 27 (2014)

13. Haji-Ali, M., Balakrishnan, G., Ordonez, V.: Elasticdiffusion: Training-free arbi-
trary size image generation through global-local content separation. In: CVPR. pp.
6603–6612 (2024)

14. He, Y., Yang, S., Chen, H., Cun, X., Xia, M., Zhang, Y., Wang, X., He, R., Chen,
Q., Shan, Y.: Scalecrafter: Tuning-free higher-resolution visual generation with
diffusion models. arXiv preprint arXiv:2310.07702 (2023)

15. He, Y., Yang, T., Zhang, Y., Shan, Y., Chen, Q.: Latent video diffusion mod-
els for high-fidelity video generation with arbitrary lengths. arXiv preprint
arXiv:2211.13221 (2022)

16. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-or, D.:
Prompt-to-prompt image editing with cross-attention control. In: ICLR (2022)

https://huggingface.co/stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned.ckpt
https://huggingface.co/stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned.ckpt


16 L. Huang et al.

17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. NeurIPS 30
(2017)

18. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS 33,
6840–6851 (2020)

19. Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded dif-
fusion models for high fidelity image generation. The Journal of Machine Learning
Research 23(1), 2249–2281 (2022)

20. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598 (2022)

21. Hoogeboom, E., Heek, J., Salimans, T.: simple diffusion: End-to-end diffusion for
high resolution images. arXiv preprint arXiv:2301.11093 (2023)

22. Jiménez, Á.B.: Mixture of diffusers for scene composition and high resolution image
generation. arXiv preprint arXiv:2302.02412 (2023)

23. Jin, Z., Shen, X., Li, B., Xue, X.: Training-free diffusion model adaptation for
variable-sized text-to-image synthesis. arXiv preprint arXiv:2306.08645 (2023)

24. Lee, Y., Kim, K., Kim, H., Sung, M.: Syncdiffusion: Coherent montage via syn-
chronized joint diffusions. NeurIPS 36 (2024)

25. Liu, H., Chen, Z., Yuan, Y., Mei, X., Liu, X., Mandic, D., Wang, W., Plumb-
ley, M.D.: Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503 (2023)

26. Lu, Z., Wang, Z., Huang, D., Wu, C., Liu, X., Ouyang, W., Bai, L.: Fit: Flexible
vision transformer for diffusion model. arXiv preprint arXiv:2402.12376 (2024)

27. Midjourney: (2024), https://www.midjourney.com, accessed: 17, 01, 2024
28. Pattichis, M.S., Bovik, A.C.: Analyzing image structure by multidimensional fre-

quency modulation. IEEE TPAMI 29(5), 753–766 (2007)
29. Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: ICCV. pp.

4195–4205 (2023)
30. Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna,

J., Rombach, R.: Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952 (2023)

31. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M.,
Sutskever, I.: Zero-shot text-to-image generation. In: ICML. pp. 8821–8831. PMLR
(2021)

32. Riad, R., Teboul, O., Grangier, D., Zeghidour, N.: Learning strides in convolutional
neural networks. In: ICLR (2021)

33. Rippel, O., Snoek, J., Adams, R.P.: Spectral representations for convolutional neu-
ral networks. NeurIPS 28 (2015)

34. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR. pp. 10684–10695 (2022)

35. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. NeurIPS 35, 36479–
36494 (2022)

36. Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M.,
Coombes, T., Katta, A., Mullis, C., Wortsman, M., Schramowski, P., Kundurthy,
S., Crowson, K., Schmidt, L., Kaczmarczyk, R., Jitsev, J.: Laion-5b: An open
large-scale dataset for training next generation image-text models (2022)

37. Si, C., Huang, Z., Jiang, Y., Liu, Z.: Freeu: Free lunch in diffusion u-net. arXiv
preprint arXiv:2309.11497 (2023)

https://www.midjourney.com


FouriScale 17

38. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International
Conference on Learning Representations (2020)

39. Teng, J., Zheng, W., Ding, M., Hong, W., Wangni, J., Yang, Z., Tang, J.: Relay
diffusion: Unifying diffusion process across resolutions for image synthesis. arXiv
preprint arXiv:2309.03350 (2023)

40. Wang, J., Li, X., Zhang, J., Xu, Q., Zhou, Q., Yu, Q., Sheng, L., Xu, D.: Diffu-
sion model is secretly a training-free open vocabulary semantic segmenter. arXiv
preprint arXiv:2309.02773 (2023)

41. Xiao, C., Yang, Q., Zhou, F., Zhang, C.: From text to mask: Localizing en-
tities using the attention of text-to-image diffusion models. arXiv preprint
arXiv:2309.04109 (2023)

42. Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis,
K.: Lion: Latent point diffusion models for 3d shape generation. arXiv preprint
arXiv:2210.06978 (2022)

43. Zhang, R.: Making convolutional networks shift-invariant again. In: ICML. pp.
7324–7334. PMLR (2019)

44. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using
very deep residual channel attention networks. In: ECCV. pp. 286–301 (2018)

45. Zhao, W., Rao, Y., Liu, Z., Liu, B., Zhou, J., Lu, J.: Unleashing text-to-image
diffusion models for visual perception. ICCV (2023)

46. Zheng, Q., Guo, Y., Deng, J., Han, J., Li, Y., Xu, S., Xu, H.: Any-size-diffusion:
Toward efficient text-driven synthesis for any-size hd images. arXiv preprint
arXiv:2308.16582 (2023)

47. Zhu, Q., Zhou, M., Huang, J., Zheng, N., Gao, H., Li, C., Xu, Y., Zhao, F.: Fourid-
own: Factoring down-sampling into shuffling and superposing. In: NeurIPS (2023)


	FouriScale: A Frequency Perspective on Training-Free High-Resolution Image Synthesis

