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Appendix

This supplementary material presents proofs for our equations and algorithm
in Sec. A. Then, we give more implementation details and results on view selec-
tion in Sec. B. Afterward, we show one ablation study on our active mapping
system to show the effectiveness of each module in Sec. C. Finally, we introduce
more implementation details and results on uncertainty quantifications in Sec. D
and do runtime analysis in Sec. E.

A Proof of Equations in the Main Paper

Active Learning with Fisher Information has been widely studied in Machine
Learning and Deep Learning in previous literatures [1, 2, 26, 29]. We provide
proofs for the key equations in the main paper for completeness. Most of our
formulations and notations are inspired by Kirsch et al . [28], who unified previous
active learning approaches via Fisher Information.

Proof for Eq. 3 We compute the Expected Information Gain (EIG) of acquisition
samples with:
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where we apply Bayes’ theorem in Eq. 13. We can derive Eq. 15 because the
Hessian matrix H

00 is symmetric, positive semidefinite. And for any symmetric,
positive semidefinite matrices A with eigenvalues �i:
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the equality holds when A = 0.
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Proof of Eq. 6 - 7 .
Let z = f(x;w⇤) be the rendering result of our model.

H
00[y|x,w⇤] = Cov [H0[y|x,w⇤]] (18)

= rwf(x;w⇤)TCov
⇥
rzH[y| z]

⇤
rwf(x;w⇤) (19)

= rwf(x;w⇤)T E
p(y|x,w⇤)

⇥
r2

zH[y| z]
⇤
rwf(x;w⇤) (20)

Please note we use H to notate entropy, H0 for Jacobian, and H
00 for the Hes-

sians of log probability. As our log probability function is a Gaussian error func-
tion defined in Eq. 1, p(y| z = f(x;w⇤)) ⇠ N (y; z, 1). Thus Ep(y|x,w⇤)

⇥
r2

zH[y| z]
⇤
=

1 for any y and z. Therefore:

rwf(x;w⇤)T E
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⇥
r2

zH[y| z]
⇤
rwf(x;w⇤)

= rwf(x;w⇤)Trwf(x;w⇤) (21)

B More Implementation Details and Qualitative Results
on Active View Selection

Implementation Details of Active View Selections with the 3D Gaussian Splat-

ting Backend We use random seed 0 for all experiments. The initial views are
uniformly sampled based on the translation vector of all camera poses. We imple-
ment the computation of Fisher Information on Plenoxels [52] and 3D Gaussian
Splatting [25] with customized CUDA kernels. As shown in Eq. 7, the diago-
nal Hessian matrixes can be implemented as efficiently as a back-propagation.
Therefore, our customized CUDA kernel, which computes diagonal Hessians for
3D Gaussian Splatting, achieved more than 70 fps on an Nvidia RTX3090 GPU.
To prevent overfitting in the initial stages, the training process for parameters of
spherical harmonics in the original 3D Gaussian Splatting begins by optimizing
only the zero-order component. Subsequently, one band of spherical harmonics is
introduced after every 1,000 iterations until all four bands of spherical harmon-
ics are activated [25]. 3D Gaussian Splatting is more prone to overfitting in our
case, especially in the background of real-world datasets, because we have much
fewer views (20 views vs. around 150 views). Therefore, we introduce one band
of spherical harmonics every 5,000 iterations. This change is applied to all the
models, so the baseline models are also benefited. Following the original train-
ing procedure of 3D Gaussian Splatting, all the models are trained for 30,000
iterations.

We provide more visualizations of our method with the 3D Gaussian Splatting
backend in Fig. 7 and Fig. 8. Our model could select the most informative views
to avoid the degeneration of 3D Gaussian Splatting models when the number of
viewpoints is highly limited.
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Method Bicycle Counter garden kitchen room Stump TreeHill Bonsai Flowers
ActiveNeRF [43] 12.63 11.69 13.69 12.15 NaN 15.49 NaN 12.77 11.65
3D Gaussian + ActiveNeRF 18.08 17.76 19.91 20.15 20.32 18.14 15.71 19.32 12.90

Table 8: Quantitative Comparison between the Original Implementation
of ActiveNeRF and Our Reimplementation on Mip-360 Dataset Here we
compare the PSNR of our implementation of ActiveNeRF on 3D Gaussian Splatting
and the original ActiveNeRF model on MipNeRF-360 dataset. Our implementation
performs better than the original implementation on all the scenes. We found the
original implementation of ActiveNeRF provided by the authors is prone to collapse on
the MipNeRF-360 dataset even after multiple reruns, producing NaN (Not a Number)
results in this table for respective splits.

Details about Our Reimplementation of ActiveNeRF with 3D Gaussian Splatting

and Plenoxels For the ActiveNeRF implementation on 3D Gaussian splatting,
we assign each 3D Gaussian with an additional variance parameter �2 and follow
the original rendering equation [25, 38, 43, 52] to compute the variance of each
pixel. Similarly, each grid vertex is assigned a variance parameter in our reimple-
mentation of ActiveNeRF with Plenoxels. The variance parameters are updated
along with other model parameters during training. When performing active
view selection, we select views with the greatest variance reduction following the
original paper [43]. To validate our reimplementation, we compare our imple-
mentation with the original ActiveNeRF implementation on the MipNeRF-360
dataset in Table 8. Our reimplementation of ActiveNeRF is much better than the
original implementation of ActiveNeRF on MipNeRF-360 datasets and Blender
Dataset. The comparative study on the Blender Dataset has been provided in
Table. 1 from our main paper.

Details about View Selection Experiments with BayesRays BayesRays [16] does
not work on view selection and cannot be easily adapted to the recent 3D Gaus-
sian Splatting model because 3D Gaussian Splatting does not take query points
as input. Therefore, we conduct experiments with the source code from the au-
thors that use NeRFactor [62] as the backbone and perform view selection based
on the L2 norm of the rendered uncertainty map on each candidate’s view. The
initial training views and schedules for adding new training views are the same
as those for other experiments.

Details about Our Implementation with Plenoxels Backend The initial views
are uniformly sampled based on the translation vector of all camera poses. For
the Blender dataset, we initialize the grid resolution to 256 and upsample the
grid to 512 in the middle of the training progress. For the 20-view case, we
train the model from 4 initial views and sample 4 views every 4 epochs with
a total of 20 epochs. For the 10-view case, we train the model from 2 initial
views and sample one more training view every four epochs with a total of 36
epochs. The learning rate for density is initially set to 30 and linearly decreases
to 0.05. The learning rate for spherical harmonics is initially set to 1e-2 and then
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Table 9: Ablation Study on Gibson and MP3D We test and compare each module
on the Gibson and MP3D dataset. It shows the effectiveness of our goal selection and
path selection module in the mapping system.

Method Gibson MP3D

PSNR " Dpeth MAE (m) # PSNR " Depth MAE (m) #
Frontier 19.35 0.1751 16.68 0.3627
Frontier + Goal Selection 22.13 0.1092 18.88 0.2178
Frontier + Goal Selection + Path Selection (Ours) 22.58 0.0924 19.96 0.1667

linearly decreases to 5e-6. During grid upsampling, in order to prevent out-of-
memory, we filtered voxels with opacity smaller than 5e-3 and kept the number
of voxels less than 22 million. All the other training settings remain the same
as the original implementation. We only conducted comparative studies on the
Blender Dataset for our Plenoxel backend as we found Plenoxels cannot produce
valid results when trained with limited viewpoints on real-world datasets like
MipNeRF360. We provide more qualitative comparisons in Fig. 9 and Fig. 10.
We also provided an enlarged figure of the Hessian matrix to help readers better
understand the distributions and sparsity of the Hessian matrix in Radiance
Field models in Fig. 11.

Details about Our Implementation with Active Mapping For the SLAM system,
we use the SplaTAM [24] implementation. We add 1 in every 4 frames into the
keyframe list and run the mapping optimization every 4 frames. We construct
a 2D metric map from depth observations. Each cell in the 2D map has three
states: unvisited, occupied, and free. All cells are initialized as unvisited. The
cell size is 5 cm. In each observation, we unproject depth images into 3D point
points and project them onto bird-eye view maps as obstacles with Orthographic
Projection. We also uniformly sample 10 particles between 0 and 80 percent of
valid depth value for each ray as free particles. These free particles are also
projected onto the 2D map. The cells which these free particles fall into are
marked as free cells. To avoid a potential collision, Gaussians within a height
range between 0.12m and 1.3m are also projected onto the 2D map as obstacles.
Frontiers are defined as the free cells which are adjacent to unvisited cells. For
the goal selection, we randomly sample 256 view poses near the frontiers. We
compute EIG for each goal and select the top 40 viewpoints. Afterward, we
use A* to plan a path from the current robot position to each goal. A greedy
path follower is adopted to plan actions to reach the goal. The maximum action
planning horizon is set to 20. We then use Batch View Selection to calculate
EIGs for each path and select the one with the highest EIG for execution.

C Ablation on Active Mapping

We conduct experiments to test the effectiveness of modules in our active
mapping system. The results are summarized in Table 9. Here, Frontier is the
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naive frontier exploration algorithm. Frontier + Goal Selection calculates
the EIG of sampled viewpoints near the frontier and chooses the largest one
as the goal. Frontier + Goal Selection + Path Selection not only selects
the goal with the highest EIG score but also selects the planned path with
the highest information gain using batch view selection. From the table, we find
with FisherRF goal point selection, the rendering quality increases from 19.35 to
22.13 in PSNR on the Gibson dataset and 16.68 to 18.88 on the MP3D dataset.
Additionally, with path selection, the PSNR increases to 22.58 on the Gibson
dataset and 19.96 on the MP3D dataset. Similarly, we also witness a decrease in
the depth error on both Gibson and MP3D datasets when adding our modules.
It shows the effectiveness of each module in our mapping system.

D More Details and Results on Uncertainty Estimation

In line with prior approaches in uncertainty estimation [55,56], we conducted
evaluations on the Light Field (LF) Dataset [70] using the Area Under Sparsi-
fication Error (AUSE) metric. This metric involves a two-step pixel filtering
process: first, pixels are filtered based on their absolute error with respect to the
ground truth depth, and then they are filtered based on their uncertainty values.
The disparity in the mean absolute error among the remaining pixels resulting
from these two sparsification steps yields two distinct error curves. The AUSE
is subsequently computed as the area between these two curves, providing an
assessment of the correlation between uncertainties and the predicted errors. As
we do not have a view selection process in uncertainty quantification bench-
mark, we train the 3D Gaussian Splatting models for 3,000 iterations and the
maximum degree of spherical harmonics is set to 2 to prevent overfitting. For
CF-NeRF, we use the official implementation to train models from scratch in the
LF dataset, as the author did not provide checkpoints for every scene. The error
during sparsification is normalized before area calculation. To calculate the area
under curves in the AUSE metric, we sampled 100 points and used the trapezoid
method to calculate the area under the curve. The qualitative comparisons are
in Figure 12. The uncertainty visualization shows that our method can produce
a more reasonable estimation of uncertainty, especially for background. For ex-
ample, in the statue scene, our method gives high uncertainty to the closet in
the background, which also has a high depth error, while CF-NeRF gives low
uncertainty.

E Runtime Analysis

First, we conduct an ablation study on the computation efficiency of our
approximation. Since it is infeasible to compute the determinant and inverse of
the entire Hessian matrix, we test the running time with different approxima-
tions on a subsampled matrix of 2879622. Table 10 (a) summarizes the mean
and standard deviation. The table shows trace computation is more than 1000
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(a) Log Det Trace Inverse
Time 1.2 s ± 0.1 s 0.8 ms ± 0.6 ms 6.0 s ± 0.1 s
(b) ActiveNeRF BayesRays Ours
Time 6.9 s ± 6.4 ms 1.1 s ± 2.5 ms 11.3 ms ± 33.3 µs

Table 10: Ablation Study on the Computation Efficiency for View Selection
and Uncertainty Quantification

times faster than determinant and inverse computation. Second, we also com-
pare our view selection and uncertainty quantification speed with BayesRays
and ActiveNeRF in Table 10 (b). Thanks to our customized CUDA implemen-
tation to calculate the trace of the Hessian matrix, our method only costs 11.3
ms for evaluating one viewpoint, which is much faster than ActiveNerF (6.9s)
and BayesRays (1.1s).
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Fig. 7: Zoomed-in Qualitative Study of Our Method on MipNeRF-360
Dataset Every second rows are zoom-in figures. Visualizations are the results of the
test set after being trained with 20 training views. All the methods have the same 3D
Gaussian Splatting Backend except for different view selection algorithms. Our method
could capture details that could only be covered by a limited number of cameras be-
cause of our active view selection algorithm.
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Fig. 8: Zoomed-in Qualitative Study of our method on Mip360
Dataset(cont.) Every second rows are zoom-in figures. Visualizations are the results
of the test set after being trained with 20 training views. All the methods have the
same 3D Gaussian Splatting Backend except for different view selection algorithms.
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ActiveNeRF Random Ours Ground Truth

Fig. 9: Qualitative Comparisons on Blender Datasets with 20 Training Views
and Plenoxels Backend. We compare our method implemented with the Plenoxels
backend with other methods using the Plenoxels backend as well. All the models are
trained with the same setting except for the view selection algorithms. The models
visualized in the figure are trained with 20 views in total, and four views are selected
each time. Although methods with the Plenoxels backend generally have more artifacts
and imperfections, our model still exhibits fewer artifacts compared to baseline models
because the views chosen by our algorithm could better regularize the model.
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ActiveNeRF Random Ours Ground Truth

Fig. 10: Qualitative Results on Blender Datasets with 10 Training Views and
Plenoxels Backend We compare our method with other methods on the Plenoxels
backend. The rendering results in the figure are generated by models trained with
ten views in total. Although reconstructing from extremely limited viewpoints is much
more challenging, our model still exhibits better qualitative rendering results compared
to baseline models.



FisherRF 25

Fig. 11: An example of the Hessian matrix on the Parameters of Plenoxel.
We compute the Hessian of the NLL function of volumetric rendering following the
Eq. (7). As it is impractical to compute the full Hessian matrix, we randomly subsample
10,000 parameters with non-zero Jacobians to visualize the Hessian matrix. We could
observe the strong diagonal pattern of the Hessian matrix because, unlike densely
connected neural networks, each parameter in Plenoxel is associated with a fixed grid
vertex.
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Fig. 12: Uncertainty Qualitative Visualization on LF Dataset Here, we show
the qualitative comparisons between our method and CF-NeRF. Both methods are
trained using four views in the LF dataset, following the configurations proposed by
CF-NeRF [55]. We take the logarithm on the uncertainty map for better visualization.



FisherRF 27

References

1. Ash, J.T., Goel, S., Krishnamurthy, A., Kakade, S.M.: Gone fishing: Neural active
learning with fisher embeddings. In: NeurIPS. vol. abs/2106.09675 (2021) 4, 15

2. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch
active learning by diverse, uncertain gradient lower bounds. In: ICLR (2020),
https://openreview.net/forum?id=ryghZJBKPS 4, 15

3. Bajcsy, R.: Active perception. Proceedings of the IEEE 76(8), 966–1005 (1988) 4
4. Bajcsy, R., Aloimonos, Y., Tsotsos, J.K.: Revisiting active perception. Autonomous

Robots 42, 177–196 (2018) 4
5. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf

360: Unbounded anti-aliased neural radiance fields. CVPR (2022) 9
6. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-nerf:

Anti-aliased grid-based neural radiance fields. In: ICCV (2023) 9
7. Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song,

S., Zeng, A., Zhang, Y.: Matterport3d: Learning from rgb-d data in indoor envi-
ronments. International Conference on 3D Vision (2017) 12

8. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning to
explore using active neural slam. arXiv preprint arXiv:2004.05155 (2020) 5

9. Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., Hennig, P.:
Laplace redux–effortless Bayesian deep learning. In: NeurIPS (2021) 7

10. Dellaert, F., Yen-Chen, L.: Neural volume rendering: Nerf and beyond (2021) 4
11. Dhami, H., Sharma, V.D., Tokekar, P.: Pred-nbv: Prediction-guided next-best-view

planning for 3d object reconstruction. In: 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). pp. 7149–7154. IEEE (2023) 5

12. Dornhege, C., Kleiner, A.: A frontier-void-based approach for autonomous explo-
ration in 3d. Advanced Robotics 27(6), 459–468 (2013) 5

13. Gao, K., Gao, Y., He, H., Lu, D., Xu, L., Li, J.: Nerf: Neural radiance field in 3d
vision, a comprehensive review (2023) 4

14. Georgakis, G., Bucher, B., Arapin, A., Schmeckpeper, K., Matni, N., Daniilidis, K.:
Uncertainty-driven planner for exploration and navigation. In: 2022 International
Conference on Robotics and Automation (ICRA). pp. 11295–11302. IEEE (2022)
5

15. Georgakis, G., Bucher, B., Arapin, A., Schmeckpeper, K., Matni, N., Daniilidis,
K.: Uncertainty-driven planner for exploration and navigation. In: ICRA (2022)
12, 13

16. Goli, L., Reading, C., Sellán, S., Jacobson, A., Tagliasacchi, A.: Bayes’ Rays: Un-
certainty quantification in neural radiance fields. arXiv (2023) 2, 4, 10, 14, 17

17. Guédon, A., Monasse, P., Lepetit, V.: Scone: Surface coverage optimization in
unknown environments by volumetric integration. Advances in Neural Information
Processing Systems 35, 20731–20743 (2022) 5

18. Guédon, A., Monnier, T., Monasse, P., Lepetit, V.: Macarons: Mapping and cover-
age anticipation with rgb online self-supervision. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 940–951 (2023) 5

19. Hinton, G.E., van Camp, D.: Keeping the neural networks simple by minimizing
the description length of the weights. In: Proceedings of the Sixth Annual Con-
ference on Computational Learning Theory. p. 5–13. COLT ’93, Association for
Computing Machinery, New York, NY, USA (1993). https://doi.org/10.1145/
168304.168306, https://doi.org/10.1145/168304.168306 3

https://openreview.net/forum?id=ryghZJBKPS
https://doi.org/10.1145/168304.168306
https://doi.org/10.1145/168304.168306
https://doi.org/10.1145/168304.168306
https://doi.org/10.1145/168304.168306
https://doi.org/10.1145/168304.168306


28 W. Jiang, W. Lei, K. Daniilidis

20. Hochreiter, S., Schmidhuber, J.: Simplifying neural nets by discovering flat minima.
In: NeurIPS (1994) 3

21. Houlsby, N., Huszar, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning
for classification and preference learning. CoRR abs/1112.5745 (2011), http:
//dblp.uni-trier.de/db/journals/corr/corr1112.html#abs-1112-5745 6

22. Jin, L., Chen, X., Rückin, J., Popović, M.: Neu-nbv: Next best view planning
using uncertainty estimation in image-based neural rendering. arXiv preprint
arXiv:2303.01284 (2023) 4

23. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal mo-
tion planning. Robotics Science and Systems VI 104(2), 267–274 (2010) 5

24. Keetha, N., Karhade, J., Jatavallabhula, K.M., Yang, G., Scherer, S., Ramanan,
D., Luiten, J.: Splatam: Splat, track & map 3d gaussians for dense rgb-d slam.
arXiv preprint arXiv:2312.02126 (2023) 5, 8, 18

25. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (July
2023), https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/ 1, 3, 4,
8, 9, 10, 16, 17

26. Kirsch, A., Amersfoort, J.v., Gal, Y.: Batchbald: Efficient and diverse batch acqui-
sition for deep bayesian active learning. In: NeurIPS (2019) 6, 15

27. Kirsch, A., Farquhar, S., Atighehchian, P., Jesson, A., Branchaud-Charron, F.,
Gal, Y.: Stochastic batch acquisition for deep active learning. arXiv preprint
arXiv:2106.12059 (2021) 4

28. Kirsch, A., Gal, Y.: Unifying approaches in active learning and active sampling via
fisher information and information-theoretic quantities. Transactions on Machine
Learning Research (2022), https://openreview.net/forum?id=UVDAKQANOW, ex-
pert Certification 3, 4, 6, 15

29. Kothawade, S.N., Beck, N.A., Killamsetty, K., Iyer, R.K.: SIMILAR: Submodular
information measures based active learning in realistic scenarios. In: Beygelzimer,
A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information
Processing Systems (2021), https://openreview.net/forum?id=VGDFaLNFFk 4,
15

30. LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Re-
search Report 9811 (1998) 5

31. Lee, S., Chen, L., Wang, J., Liniger, A., Kumar, S., Yu, F.: Uncertainty guided pol-
icy for active robotic 3d reconstruction using neural radiance fields. IEEE Robotics
and Automation Letters 7(4), 12070–12077 (2022) 2, 4

32. Lindley, D.V.: On a Measure of the Information Provided by an Experiment. The
Annals of Mathematical Statistics 27(4), 986 – 1005 (1956). https://doi.org/
10.1214/aoms/1177728069, https://doi.org/10.1214/aoms/1177728069 6

33. Lluvia, I., Lazkano, E., Ansuategi, A.: Active mapping and robot exploration: A
survey. Sensors 21(7), 2445 (2021) 5

34. MacDonald, L.E., Valmadre, J., Lucey, S.: On progressive sharpening, flat minima
and generalisation (2023) 3

35. MacKay, D.J.C.: Bayesian Interpolation. Neural Computation 4(3), 415–447 (05
1992). https://doi.org/10.1162/neco.1992.4.3.415, https://doi.org/10.
1162/neco.1992.4.3.415 7

36. Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A.,
Duckworth, D.: NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections. In: CVPR (2021) 2

37. Matsuki, H., Murai, R., Kelly, P.H.J., Davison, A.J.: Gaussian Splatting SLAM
(2024) 5

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://openreview.net/forum?id=UVDAKQANOW
https://openreview.net/forum?id=VGDFaLNFFk
https://doi.org/10.1214/aoms/1177728069
https://doi.org/10.1214/aoms/1177728069
https://doi.org/10.1214/aoms/1177728069
https://doi.org/10.1214/aoms/1177728069
https://doi.org/10.1214/aoms/1177728069
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.415


FisherRF 29

38. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020) 9, 17

39. Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P., Martin-Brualla, R., Bar-
ron, J.T.: MultiNeRF: A Code Release for Mip-NeRF 360, Ref-NeRF, and RawN-
eRF (2022), https://github.com/google-research/multinerf 9

40. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15
(Jul 2022). https://doi.org/10.1145/3528223.3530127, https://doi.org/10.
1145/3528223.3530127 7

41. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming 14, 265–294
(1978) 7

42. Ortiz, J., Clegg, A., Dong, J., Sucar, E., Novotny, D., Zollhoefer, M., Mukadam,
M.: isdf: Real-time neural signed distance fields for robot perception. In: Robotics:
Science and Systems (2022) 5

43. Pan, X., Lai, Z., Song, S., Huang, G.: Activenerf: Learning where to see with
uncertainty estimation. In: ECCV. pp. 230–246. Springer (2022) 2, 4, 5, 9, 11, 17

44. Papachristos, C., Khattak, S., Alexis, K.: Uncertainty-aware receding horizon ex-
ploration and mapping using aerial robots. In: 2017 IEEE international conference
on robotics and automation (ICRA). pp. 4568–4575. IEEE (2017) 5

45. Placed, J.A., Strader, J., Carrillo, H., Atanasov, N., Indelman, V., Carlone, L.,
Castellanos, J.A.: A survey on active simultaneous localization and mapping: State
of the art and new frontiers. IEEE Transactions on Robotics (2023) 5

46. Ramakrishnan, S.K., Al-Halah, Z., Grauman, K.: Occupancy anticipation for ef-
ficient exploration and navigation. In: Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16. pp.
400–418. Springer (2020) 5

47. Ramakrishnan, S.K., Gokaslan, A., Wijmans, E., Maksymets, O., Clegg, A.,
Turner, J.M., Undersander, E., Galuba, W., Westbury, A., Chang, A.X., Savva, M.,
Zhao, Y., Batra, D.: Habitat-matterport 3d dataset (HM3d): 1000 large-scale 3d
environments for embodied AI. In: Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (2021) 12

48. Ran, Y., Zeng, J., He, S., Chen, J., Li, L., Chen, Y., Lee, G., Ye, Q.: Neurar: Neural
uncertainty for autonomous 3d reconstruction with implicit neural representations.
IEEE Robotics and Automation Letters 8(2), 1125–1132 (Feb 2023). https://
doi.org/10.1109/lra.2023.3235686, http://dx.doi.org/10.1109/LRA.2023.
3235686 2, 5

49. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In: ICCV (2021) 7

50. Ren, P., Xiao, Y., Chang, X., Huang, P.Y., Li, Z., Gupta, B.B., Chen, X., Wang,
X.: A survey of deep active learning. ACM computing surveys (CSUR) 54(9), 1–40
(2021) 4

51. Sandström, E., Li, Y., Van Gool, L., Oswald, M.R.: Point-slam: Dense neural point
cloud-based slam. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 18433–18444 (2023) 5

52. Sara Fridovich-Keil and Alex Yu, Tancik, M., Chen, Q., Recht, B., Kanazawa, A.:
Plenoxels: Radiance fields without neural networks. In: CVPR (2022) 3, 7, 8, 16,
17

https://github.com/google-research/multinerf
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1109/lra.2023.3235686
https://doi.org/10.1109/lra.2023.3235686
https://doi.org/10.1109/lra.2023.3235686
https://doi.org/10.1109/lra.2023.3235686
http://dx.doi.org/10.1109/LRA.2023.3235686
http://dx.doi.org/10.1109/LRA.2023.3235686


30 W. Jiang, W. Lei, K. Daniilidis

53. Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub, J.,
Liu, J., Koltun, V., Malik, J., Parikh, D., Batra, D.: Habitat: A Platform for Em-
bodied AI Research. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (2019) 12

54. Schervish, M.: Theory of Statistics. Springer Series in Statistics, Springer New
York (2012), https://books.google.com/books?id=s5LHBgAAQBAJ 5

55. Shen, J., Agudo, A., Moreno-Noguer, F., Ruiz, A.: Conditional-flow nerf: Accurate
3d modelling with reliable uncertainty quantification. In: ECCV (2022) 2, 4, 14,
19, 26

56. Shen, J., Ruiz, A., Agudo, A., Moreno-Noguer, F.: Stochastic neural radiance fields:
Quantifying uncertainty in implicit 3d representations. CoRR abs/2109.02123
(2021), https://arxiv.org/abs/2109.02123 4, 14, 19

57. Shen, S., Michael, N., Kumar, V.: Autonomous indoor 3d exploration with a micro-
aerial vehicle. In: 2012 IEEE international conference on robotics and automation.
pp. 9–15. IEEE (2012) 5

58. Smith, S., Le, Q.V.: A bayesian perspective on generalization and stochastic gra-
dient descent. In: ICLR (2018), https://openreview.net/pdf?id=BJij4yg0Z 3

59. Sucar, E., Liu, S., Ortiz, J., Davison, A.: iMAP: Implicit mapping and positioning
in real-time. In: Proceedings of the International Conference on Computer Vision
(ICCV) (2021) 5

60. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In: CVPR (2022) 7

61. Sünderhauf, N., Abou-Chakra, J., Miller, D.: Density-aware nerf ensembles: Quan-
tifying predictive uncertainty in neural radiance fields. In: ICRA (2023) 4

62. Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., Wang, T., Kristoffersen,
A., Austin, J., Salahi, K., Ahuja, A., McAllister, D., Kanazawa, A.: Nerfstudio: A
modular framework for neural radiance field development. In: ACM SIGGRAPH
2023 Conference Proceedings. SIGGRAPH ’23 (2023) 17

63. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image
quality assessment. In: NeurIPS. vol. 2, pp. 1398–1402. IEEE (2003) 9

64. Xia, F., Zamir, A.R., He, Z., Sax, A., Malik, J., Savarese, S.: Gibson env: Real-
world perception for embodied agents. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 9068–9079 (2018) 12

65. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Pro-
ceedings 1997 IEEE International Symposium on Computational Intelligence in
Robotics and Automation CIRA’97.’Towards New Computational Principles for
Robotics and Automation’. pp. 146–151. IEEE (1997) 4, 8

66. Yan, C., Qu, D., Wang, D., Xu, D., Wang, Z., Zhao, B., Li, X.: Gs-slam: Dense
visual slam with 3d gaussian splatting. arXiv preprint arXiv:2311.11700 (2023) 5

67. Yan, D., Liu, J., Quan, F., Chen, H., Fu, M.: Active implicit object reconstruction
using uncertainty-guided next-best-view optimization (2023) 4

68. Yan, Z., Yang, H., Zha, H.: Active neural mapping. In: ICCV (2023) 2, 5, 12, 13
69. Ye, K., Dong, S., Fan, Q., Wang, H., Yi, L., Xia, F., Wang, J., Chen, B.: Multi-

robot active mapping via neural bipartite graph matching. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14839–
14848 (2022) 5

70. Yücer, K., Sorkine-Hornung, A., Wang, O., Sorkine-Hornung, O.: Efficient 3d ob-
ject segmentation from densely sampled light fields with applications to 3d re-
construction. ACM Trans. Graph. 35(3) (mar 2016). https://doi.org/10.1145/
2876504, https://doi.org/10.1145/2876504 14, 19

https://books.google.com/books?id=s5LHBgAAQBAJ
https://arxiv.org/abs/2109.02123
https://openreview.net/pdf?id=BJij4yg0Z
https://doi.org/10.1145/2876504
https://doi.org/10.1145/2876504
https://doi.org/10.1145/2876504
https://doi.org/10.1145/2876504
https://doi.org/10.1145/2876504


FisherRF 31

71. Yugay, V., Li, Y., Gevers, T., Oswald, M.R.: Gaussian-slam: Photo-realistic dense
slam with gaussian splatting (2023) 5

72. Zhan, H., Zheng, J., Xu, Y., Reid, I., Rezatofighi, H.: Activermap: Radiance field
for active mapping and planning (2022) 2, 4

73. Zhan, X., Wang, Q., hao Huang, K., Xiong, H., Dou, D., Chan, A.B.: A comparative
survey of deep active learning (2022) 4

74. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR. pp. 586–595 (2018)
9

75. Zhu, C., Ding, R., Lin, M., Wu, Y.: A 3d frontier-based exploration tool for mavs.
In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence
(ICTAI). pp. 348–352. IEEE (2015) 5

76. Zhu, Z., Peng, S., Larsson, V., Xu, W., Bao, H., Cui, Z., Oswald, M.R., Pollefeys,
M.: Nice-slam: Neural implicit scalable encoding for slam (2021) 5


	FisherRF: Active View Selection and Mapping with Radiance Fields using Fisher Information

