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In the supplementary material, we offer additional details and experiments
that are not included in the main paper due to the page limit. This includes im-
plementation specifics and architectural design, along with baseline implemen-
tation methodologies (Appendix A). Additionally, we describe the generation of
test sets for the multi-motion generation task in Appendix B, present further ab-
lation studies in Appendix C, report comprehensive comparison in Appendix D,
and provide in-depth analysis of our work in Appendix E. Lastly, we include
extra qualitative results in Appendix F.

A Additional Details

A.1 M2D2M

Motion VQ-VAE. In developing the Motion VQ-VAE, we adopt the architec-
ture proposed by Zhang et al . [63]. We construct both the encoder and decoder of
the Motion VQ-VAE using a CNN-based architecture, specifically employing 1D
convolutions. Additionally, we adhere to the same hyperparameters and training
procedures as outlined in their study.
Denoising Transformer. The denoising transformer configuration is specified
as follows: 12 layers, 16 attention heads, 512 embedding dimensions, 2048 hidden
dimensions, and a dropout rate of 0. Also, we designed action sentence condi-
tioning for the denoising transformer to enable the multi-motion generation task
with the HumanML3D dataset and KIT-ML dataset. We focus on the action
verbs within a sentence (i.e., ‘walk’, ‘turn around’) of datasets, because they
offer clear information about the type of motion involved. Therefore, we further
break down the sentence using action verbs and then enrich them to form a
complete action description, like ‘a person walking,’ which serves as the basis
for conditioning the motion generation as illustrated in Fig. 1. For a joint sam-
pling of Two-Phase Sampling (TPS), which aims to create a seamless motion
sequence, we concatenate action tokens from successive actions for condition-
ing. This forms a compound condition that infuses the motion generation with
∗ Co-first authors. † Senior authors. ‡ Work done at Honda Research Institute.
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Fig. 1: Overview of action sentence conditioning of M2D2M. We initially decompose
sentences to extract action verbs and subsequently utilize these verbs to construct new
sentences. These newly formed sentences then serve as conditions for generating human
motion sequences.

contextual information, ensuring the resulting sequence is both cohesive and
reflective of the intended actions.
Implementation Details. Our model adheres to the hyper-parameter settings
of VQ-Diffusion [17] unless otherwise stated, encompassing the configurations for
the transition matrix parameters, namely ↵̄t and �̄t. We linearly increase the �̄t
and decrease the ↵̄t. The loss coefficient is set at � = 5.0⇥10�4 as per Eq. (3), and
the diffusion process is defined over T = 100 timesteps. Optimization is carried
out using the AdamW optimizer with a learning rate of 2.0 ⇥ 10�4, �1 = 0.9,
�2 = 0.99, and weight decay 4.5 ⇥ 10�2. We trained the model for 110 epochs,
and the learning rate decayed to 2.0 ⇥ 10�5 at the 100th epoch. We use the
guidance scale of s = 4 for single motion generation, and s = 2 for multi-motion
generation. When generating multi-motion sequence, we use Ts = 90 for TPS.
For generating single motions, we apply a Dynamic Transition Probability scale
factor of ⌘ = 0.5, and for multi-action generation, we adjust the scale factor to
⌘ = 0.25.

A.2 Baselines for Multi-Motion Generation

We evaluated the baseline methods of T2M-GPT‡ [63] and PriorMDM§ [49]
for the task of multi-motion generation based on the code provided from the
original papers. For a fair comparison with T2M-GPT, we modified the model
to produce codebooks matching the specified ground truth length by disabling
the end-token output. These codebooks were then concatenated for each motion
and fed into the decoder. In the case of PriorMDM and Handshake [49], we set
the hyper-parameter to match the illustration of Fig. 3 in the main paper for
the fair comparison, employing a handshake size of 40 and transition margins
‡
https://github.com/Mael-zys/T2M-GPT

§
https://githubwcom/priorMDM/priorMDM

https://github.com/Mael-zys/T2M-GPT
https://githubwcom/priorMDM/priorMDM
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Table 1: Comparison table for Multi-motion generation performance with different
classifier-free scales on HumanML3D dataset.

Classifier-free
Guidance Scale (s)

Individual Motion Transition (40 frames)
R-Top3" FID# MMdist# Div! FID# Div! Jerk!

Ground Truth (Single) 0.791±.002 0.002±.000 2.707±.008 9.820±.065 0.003±.002 9.574±.054 1.192±.005

Ground Truth (Concat) - - - - - - 1.371±.004

1.0 0.628±.005 0.350±.021 3.836±.019 9.573±.156 3.299±.152 8.395±.142 1.246±.006

1.5 0.705±.004 0.254±.017 3.063±.017 9.777±.170 3.293±.177 8.545±.115 1.242±.009

2.0 0.733±.003 0.254±.016 3.165±.019 9.806±.158 3.276±.173 8.599±.154 1.238±.008

2.5 0.746±.006 0.262±.025 3.063±.017 9.844±.148 3.321±.178 8.622±.124 1.252±.009

3.0 0.751±.006 0.270±.020 3.042±.023 9.795±.147 3.400±.194 8.648±.130 1.263±.007

of 20. For the other hyper-parameters, we follow the setup of PriorMDM [49].
For the SLERP algorithm, unlike the TEACH [6] setup, we first independently
generate individual motions with half-transition length shorter than the given
ground truth length, then apply SLERP as illustrated in Fig. 3 of the main
paper. We computed the FID score based on their prescribed method, for both
individual motions and transitions.

B Multi-Motion Generation Test Set

Due to the absence of distinct motion boundaries in multi-action verb annota-
tions within the HumanML3D and KIT-ML datasets used in our experiments, we
opted for test sets that exclusively consist of single action verbs. In the curated
test sets, each sentence includes only one action verb, such as ‘walk’ or ‘run’. We
then randomly selected N action descriptions from this pool of single-action verb
sentences, ensuring no overlap, to create our test set for the multi-motion gen-
eration task. Specifically, for N = 4, the test set from the HumanML3D dataset
comprises 1448 motions, each associated with a single-verb annotation. Similarly,
the test set from the KIT-ML dataset includes 532 motions, all characterized by
single action verb annotations.

C Additional Ablation Studies

In this section, we present a series of additional ablation studies that were not
included in Sec. 5.4 of the main paper due to the page limit. It includes 1)
exploring different classifier-free guidance scales (Appendix C.1), 2) assessing our
model’s performance with varying numbers of actions in multi-motion generation
tasks (Appendix C.2), 3) examining the smoothness-fidelity trade-off at different
independent sampling steps in TPS (Appendix C.4), and finally, 4) evaluating
the Dynamic Transition Probability scale ⌘ (Appendix C.5).

C.1 Classifier-free Guidance Scale

We first focus on the effect of different classifier guidance scales s, which is de-
scribed in Eq. (9). To evaluate the performance of our model in multi-motion
generation and single-motion generation, we utilize the HumanML3D dataset,
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Table 2: Single-motion generation performance on the different classifier-free guidance
scale on HumanML3D.

Classifier-free
Guidance Scale (s) R-Top 3" FID# MM-Dist# Diversity!

Ground Truth 0.797±.002 0.002±.000 2.974±.008 9.503±.065

0.0 0.686±.003 0.107±.005 3.690±.008 9.580±.088

1.0 0.786±.003 0.146±.002 3.084±.008 9.897±.088

2.0 0.804±.003 0.139±.004 2.995±.008 9.886±.082

3.0 0.803±.002 0.107±.003 2.980±.006 9.815±.089

4.0 0.799±.002 0.087±.003 3.018±.008 9.672±.086

5.0 0.787±.002 0.127±.007 3.089±.007 9.439±.086

Table 3: Single motion generation performance on different distance functions for
d(·, ·) on Human3D dataset.

Methods R-Top3" FID# MM-Dist# Diversity! MModality"
L2 0.798±.002 0.098±.005 3.018±.008 9.623±.085 2.115±.079

L2 Rank 0.799±.002 0.087±.004 3.018±.008 9.672±.086 2.132±.073

Cosine 0.801±.002 0.092±.004 3.011±.008 9.670±.084 2.137±.084

Cosine Rank 0.797±.002 0.099±.005 3.026±.008 9.669±.085 2.125±.069

and provide results presented in Table 2. This experiment reveals that the op-
timal balance between accuracy and fidelity for these metrics is achieved at a
classifier guidance scale of s = 4 for single-motion generation, and best smooth-
ness at s = 2 for multi-motion generation.

C.2 Number of Action in Multi-Motion Generation

In order to explore our model’s effectiveness in generating long-term motion, we
evaluate the performance of our model by progressively increasing the number
of actions (N) using the HumanML3D dataset. The results of these evaluations
are detailed in Table 4. We found that as N increases, R-Top3 and FID scores
of individual motion demonstrate a decline, indicating a reduction in fidelity
with more actions. Despite this, it’s noteworthy that our model’s performance
on the transition part remains comparably effective to that of real single mo-
tions, even at N = 32, a considerably long motion sequence. This highlights our
model’s proficiency in generating long-term motion with smooth and coherent
transitions.

C.3 Different Distance metrics for Dynamic Transition Probability

In Table 3, we conduct a comparative analysis of different distance functions for
d(·, ·), utilized in defining the codebook distance for Eq. (8). Specifically, we eval-
uate the performance of L2 and Cosine Distance, focusing on their effectiveness
as distance functions. Our findings indicate that the L2 Rank distance function
yields the best FID score, highlighting its superiority in this context.

C.4 Effect of Two-Phase Sampling

In Table 5, we explore the impact of Two-Phase Sampling. Our analysis also in-
cludes adjustments in the ratio of independent denoising steps (Ts) to the total
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Table 4: Multi-motion generation performance on the different number of actions (N)
on HumanML3D.

The number
of actions (N)

Individual Motion Transition (40 frames)
R-Top3" FID# MMdist# Div! FID# Div! Jerk!

Ground Truth (Single) 0.791±.002 0.002±.000 2.707±.008 9.820±.065 0.003±.002 9.574±.054 1.192±.005

Ground Truth (Concat) - - - - - - 1.371±.004

N = 1 0.751±.008 0.196±.003 3.012±.018 9.894±.057 3.340±.219 8.751±.005 1.248±.005

N = 2 0.737±.007 0.198±.025 3.127±.031 9.870±.064 3.430±.431 8.497±.121 1.244±.013

N = 4 0.733±.003 0.254±.016 3.165±.019 9.806±.158 3.276±.173 8.599±.154 1.238±.008

N = 8 0.733±.005 0.307±.027 3.153±.028 9.624±.137 3.343±.092 8.675±.121 1.255±.010

N = 16 0.725±.004 0.312±.031 3.193±.018 9.557±.066 3.380±.109 8.455±.165 1.245±.011

N = 32 0.731±.005 0.350±.040 3.192±.023 9.555±.069 3.336±.145 8.537±.182 1.248±.013

Table 5: Multi-motion generation performance across a different number of indepen-
dent denoising steps (Ts) of Two-Phase Sampling on HumanML3D.

Methods Individual Motion Transition (40 frames)
R-Top3" FID# MMdist# Div! FID# Div! Jerk!

Ground Truth (Single) 0.791±.002 0.002±.000 2.707±.008 9.820±.065 0.003±.002 9.574±.054 1.192±.005

Ground Truth (Concat) - - - - - - 1.371±.004

w/o TPS 0.755±.007 0.173±.010 3.015±.024 9.950±.076 3.455±.142 8.554±.081 1.402±.005

Ts = 100 0.751±.008 0.196±.003 3.012±.018 9.894±.057 3.340±.219 8.751±.005 1.248±.005

Ts = 95 0.737±.004 0.232±.028 3.105±.017 9.772±.167 3.289±.243 8.643±.132 1.253±.007

Ts = 90 0.733±.003 0.254±.016 3.165±.019 9.806±.158 3.276±.173 8.599±.154 1.238±.008

Ts = 80 0.725±.006 0.284±.024 3.194±.029 9.767±.129 3.338±.129 8.691±.114 1.247±.007

Ts = 50 0.709±.006 0.371±.034 3.315±.018 9.665±.125 3.282±.263 8.595±.144 1.254±.010

Table 6: Multi-motion generation on different smoothing methods with MDM on
HumanML3D.

Methods Individual Motion Transition (40 frames)
R-Top3" FID# MMdist# Div! FID# Div! Jerk!

Ground Truth (Single) 0.791 0.002 2.707 9.820 0.003 9.574 1.192
Ground Truth (Concat) - - - - - - 1.371

MDM [54] + Handshake [49] 0.586 0.832 5.901 9.543 3.351 8.801 0.476
MDM [54] + TPS (Ours) 0.640 0.582 5.287 9.321 3.376 8.070 0.634

number of denoising steps (T ). This examination reveals a clear trade-off in mo-
tion generation between smoothness and fidelity. As discussed in Sec. 4.3, phases
of independent sampling enhance the fidelity of individual motions, while phases
of joint sampling improve the fidelity and smoothness of transitions between
motions. Implementing the Two-Phase Sampling algorithm and reducing the
number of independent sampling steps (Ts) tends to improve smoothness met-
rics (e.g., Jerk), but simultaneously, fidelity metrics such as R-Top3 and FID
begin to deteriorate. This observation emphasizes the intrinsic trade-off between
smoothness and fidelity in motion generation, identifying an optimal Ts = 90 for
the smoothness metric being identified.

In Table 6, we evaluate multi-motion generation algorithms on non-latent
diffusion models. We applied Handshake [49] and TPS to MDM [54], a diffusion
model operating in Cartesian space with 3D skeletal coordinates. We observe
that the effectiveness of TPS is not confined to its designed latent space; it
also functions effectively in the Cartesian domain. The results show that TPS
achieves better FID and R-Precision for individual motions, albeit with reduced
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Table 7: Multi-motion generation performance across a different number of indepen-
dent denoising steps (Ts) of Two-Phase Sampling on HumanML3D.

Transition Probability
Methods

Individual Motion Transition (40 frames)
R-Top3" FID# MMdist# Div! FID# Div! Jerk!

Ground Truth (Single) 0.791±.002 0.002±.000 2.707±.008 9.820±.065 0.003±.002 9.574±.054 1.192±.005

Ground Truth (Concat) - - - - - - 1.371±.004

�(t) - 0.738±.009 0.253±.002 3.164±.021 9.822±.051 3.483±.029 8.625±.044 1.265±.005

�(d, t) ⌘ = 1.00 0.730±.005 0.264±.026 3.152±.028 9.808±.162 3.315±.225 8.654±0.064 1.252±.007

�(d, t) ⌘ = 0.50 0.733±.003 0.244±.016 3.156±.029 9.830±.160 3.278±.138 8.586±.127 1.250±.008

�(d, t) ⌘ = 0.33 0.732±004 0.245±.010 3.150±.173 9.815±.152 3.312±.171 8.675±.134 1.246±.009

�(d, t) ⌘ = 0.25 0.734±.003 0.253±.016 3.165±.019 9.806±.158 3.276±.017 8.599±.154 1.238±.008

�(d, t) ⌘ = 0.20 0.724±005 0.254±.010 3.194±.026 9.803±.152 3.330±.205 8.519±.162 1.247±.008

Fig. 2: PCA plot representing motion tokens from the codebook of Motion VQ-VAE,
visualized in 2D (Left) and 3D (Right) space.

diversity. For the transition part, TPS demonstrates comparable FID results
while exhibiting improved smoothness as measured by Jerk.

C.5 The scale of Transition Probability Matrix

We investigated the impact of dynamic transition probability on the generation
of multiple motions by conducting an ablation study that varied the transition
probability scale, ⌘. In Table 7, we noted that the dynamic transition probability,
�(d, t), outperforms the traditional method of �(t). Additionally, the results
indicate a trend where the smoothness metric (Jerk) becomes closer to ground
truth single motion as ⌘ is reduced.

D Comprehensive Comparison of Single-Motion
Generation

In Tables 8 and 9, we present a comprehensive comparison of single-motion
generation results to demonstrate the effectiveness of our method.
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Table 8: Single-motion generation performance on HumanML3D. The figures high-
lighted in bold and blue denote the best and second-best results, respectively.

Methods R-Top 3" FID# MM-Dist# Diversity! MModality"
Ground Truth 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
VQ-VAE (reconstruction) 0.785±.002 0.070±.001 3.072±.009 9.593±.079 -
Seq2Seq [37] 0.396±.002 11.75±.035 5.529±.007 6.223±.061 -
J2LP [2] 0.486±.002 11.02±.046 5.296±.008 6.223±.058 -
Text2Gesture [10] 0.345±.002 5.012±.030 6.030±.008 7.676±.071 -
Hier [16] 0.552±.004 6.532±.024 5.012±.018 6.409±.042 -
MoCoGAN [55] 0.106±.001 94.41±.021 9.643±.006 8.332±.008 0.019±.000

Dance2Music [34] 0.097±.001 66.98±.016 8.116±.006 0.462±.011 0.043±.001

TEMOS [42] 0.722±.002 3.734±.028 3.703±.008 0.725±.071 0.368±.018

TM2T [21] 0.729±.002 1.501±.017 3.467±.011 8.973±.076 2.424±.093

MLD [11] 0.736±.002 1.087±.021 3.347±.008 8.589±.083 2.219±.074

Guo et al . [19] 0.772±.002 0.473±.013 3.196±.010 9.175±.082 2.413±.079

MDM [54] 0.611±.007 0.544±.044 5.566±.027 9.724±.086 2.799±.072

MotionDiffuse [64] 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

T2M-GPT [63] 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

AttT2M [67] 0.786±.006 0.112±.006 3.038±.007 9.700±.090 2.452±.051

MAA [8] 0.675±.002 0.774±.007 - 8.230±.064 -
M2DM [32] 0.763±.003 0.352±.005 3.134±.010 9.926±.073 3.587±.072

M2D2M (w/ �t) 0.796±.002 0.115±.006 3.036±.008 9.680±.074 2.193±.077

M2D2M (w/ �(t, d)) 0.799±.002 0.087±.004 3.018±.008 9.672±.086 2.115±.079

Table 9: Single-motion generation performance on KIT-ML. The figures highlighted
in bold and blue denote the best and second-best results, respectively.

Methods R-Top3" FID# MM-Dist# Diversity! MModality"
Ground Truth 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -
VQ-VAE (reconstruction) 0.740±.006 0.472±.011 2.986±.027 10.994±.120 -
Seq2Seq [37] 0.241±.006 24.86±.348 7.960±.031 6.744±.106 -
J2LP [2] 0.483±.005 6.545±.072 5.147±.030 9.073±.100 -
Text2Gesture [10] 0.338±.005 12.12±.183 6.964±.029 9.334±.079 -
Hier [16] 0.531±.007 5.203±.107 4.986±.027 9.563±.072 -
MoCoGAN [55] 0.063±.003 82.69±.242 10.47±.012 3.091±.043 0.250±.009

Dance2Music [34] 0.086±.003 115.4±.240 10.40±.016 0.241±.004 0.062±.002

TEMOS [42] 0.687±.002 3.717±.028 3.417±.008 10.84±.004 0.532±.018

TM2T [21] 0.587±.005 3.599±.051 4.591±.019 9.473±.100 3.292±.034

Guo et al . [19] 0.681±.007 3.022±.107 3.488±.028 10.72±.145 2.052±.107

MLD [11] 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

MDM [54] 0.396±.004 0.497±.021 9.191±.022 10.847±.109 1.907±.214

MotionDiffuse [64] 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

T2M-GPT [63] 0.737±.006 0.717±.041 3.053±.026 10.862±.094 1.912±.036

AttT2M [67] 0.751±.006 0.870±.039 3.309±.021 10.96±.123 2.281±.047

M2DM [32] 0.743±.004 0.515±.029 3.015±.017 11.417±.097 3.325±037

M2D2M (w/ �t) 0.743±.006 0.404±.022 3.018±.019 10.749±.102 2.063±.066

M2D2M (w/ �(t, d)) 0.753±.006 0.378±.023 3.012±.021 10.709±.121 2.061±.067

E Analysis

E.1 Codebook visualization

To examine relationships within the codebook, which inspired our design of
dynamic transition probabilities as detailed in Sec. 4.2, we have visualized the
tokens from the Motion VQ-VAE’s codebook in Fig. 2. This visualization reveals
that certain tokens are more closely correlated, as evidenced by their clustering
or alignment along implicit lines. Unlike the uniform transition strategy used in
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Fig. 3: (Left) Plot of Mean Velocity and (Right) plot of Mean Jerk of all transitions
(40 frames) across all test sets in Multi-Motion Generation with N = 4. ‘GT’ represents
concatenated real single motions.

Fig. 4: Inference time scaling with action sequence length. Measured with a single
NVIDIA RTX A6000 GPU.

the VQ-Diffusion model, our method starts with a broad, exploratory range of
transitions to encourage diversity by considering token proximity. These results
justify our design of transition probabilities for the discrete diffusion.

E.2 Mean Velocity & Jerk Plot of Generated Multi-Motion

To assess the smoothness of our M2D2M model, we plotted the mean velocity of
the generated multi-motion sequences across all test sets for multi-motion gener-
ation, as shown in Fig. 3). In this figure, concatenated real single motions serve
as the ground truth (GT). It is evident that the GT demonstrates discrete tran-
sitions between motions, while our M2D2M model (OURS) achieves smoother
transitions with reduced jerk in the transitional phases.

E.3 Running time

We calculate inference time based on the number of actions and visualize the
results in Fig. 4. This illustration demonstrates that our method is practical for
generating multi-motion sequences with reasonable computational cost. We set
each action to have 196 frames; thus, 256 text prompts generate 50,176 frames.
The gradient of the plotted line is nearly linear, as the joint sampling step is
limited to Ts, allowing most other steps to be executed in parallel within a batch.
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F Additional Qualitative Results of Generated
Multi-Motion from M2D2M

Further qualitative results showcasing the capabilities of M2D2M in multi-motion
generation, akin to the examples in Fig. 1 in the main paper, are provided as
animations (GIFs) in the supplementary materials.


	M2D2M: Multi-Motion Generation from Text with Discrete Diffusion Models
	Supplementary Material of M2D2M: Multi-Motion Generation from Text with Discrete Diffusion Models

