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1 Convergence Discussion

1.1 ReNoise As Contraction mapping

In this section, we discuss the proposed method from a convergence perspective.
For completeness, we will present the entire discussion, including parts from the
main paper.

Toy Example. We begin with the simple toy example, the diffusion of a shifted
Gaussian. Given the initial distribution µ0 ∼ N (a, I), where a is a non-zero shift
value and I is the identity matrix. The diffusion process defines the family of
distributions µt ∼ N (ae−t, I), and the probability flow ODE takes the form
dz
dt = −ae−t (see [3] for details). The Euler solver step at a state (zt, t), and
time step ∆t moves it to (z

(1)
t+∆t, t+∆t) = (zt − ae−t ·∆t, t+∆t). Notably, the

backward Euler step at this point does not lead us to zt. After applying the first
renoising iteration, we get (z(2)t+∆t, t+∆t) = (zt− ae−(t+∆t) ·∆t, t+∆t) and the
backward Euler step at this point leads exactly to (zt, t). Thus, in this simple
example, the ReNoise algorithm successfully estimates the exact pre-image after
a single step. While we cannot guarantee that in the general case, we will discuss
some sufficient conditions for the algorithm’s convergence and empirically verify
them for the image diffusion model.

ReNoise Convergence. During the inversion process, we aim to find the next
noise level inversion, denoted by ẑt, such that applying the denoising step to ẑt
recovers the previous state, zt−1. Given the noise estimation ϵθ(zt, t) and fixed
zt−1, the ReNoise mapping defined in Section 3 in the main paper can be written
as G : zt → InverseStep(zt−1, ϵθ(zt, t)). For example, in the case of using DDIM
sampler the mapping is G(zt) = 1

ϕt
(zt−1−ψtϵθ(zt, t)). The point ẑt, which maps

after the denoising step to zt−1, is a stationary point of this mapping. Given z(1)t ,
the first approximation of the next noise level zt, our goal is to show that the
sequence z(k)t = Gk−1(z(1)t ), k → ∞ converges. As the mapping G is continuous,
the limit point would be its stationary point. The definition of G gives us

∥z(k+1)
t − z

(k)
t ∥ = ∥G(z(k)t )− G(z(k−1)t )∥,
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Fig. 1: Scaled Jacobian norm of the mapping z
(k)
t → z

(k)
t calculated for various noise

levels t, iterations k. We report the average and the standard deviation calculated
over 32 images. Values below 1 indicate the exponential convergence of the ReNoise
algorithm.

where the norm is always assumed as the l2-norm. For the ease of the notations,
let us define ∆(k) = z

(k)
t − z

(k−1)
t . For convergence proof it is sufficient to show

that the sum on norms of these differences converges which will imply that
z
(k)
t is the Cauchy sequence. Below we check that in practice ∥∆(k)∥ decreases

exponentially as k → ∞ and thus has finite sum. In the assumption that G is
C2-smooth, the Taylor series conducts:

∥∆(k+1)∥ = ∥G(z(k)t )− G(z(k−1)t )∥ =

∥G(z(k−1)t ) +
∂G
∂z

|
z
(k−1)
t

·∆(k) +O(∥∆(k)∥2)− G(z(k−1)t )∥ =

∥∂G
∂z

|
z
(k−1)
t

·∆(k) +O(∥∆(k)∥2)∥ ≤ ∥∂G
∂z

|
z
(k−1)
t

∥ · ∥∆(k)∥+O(∥∆(k)∥2) =

ψt
ϕt

· ∥∂ϵθ
∂z

|
z
(k−1)
t

∥ · ∥∆(k)∥+O(∥∆(k)∥2)

Thus in a sufficiently small neighbour the convergence dynamics is defined by
the scaled Jacobian norm ψt

ϕt
· ∥∂ϵθ∂z |z(k−1)

t
∥. Figure 1 shows this scaled norm

estimation for the SDXL diffusion model for various steps and ReNoise iterations
indices (k). Remarkably, the ReNoise indices minimally impact the scale factor,
consistently remaining below 1. This confirms in practice the convergence of the
proposed algorithm. Notably, the highest scaled norm values occur at smaller t
(excluding the first step) and during the initial renoising iteration. This validates
the strategy of not applying ReNoise in early steps, where convergence tends to
be slower compared to other noise levels. Additionally, the scaled norm value for
the initial t approaches 0, which induces almost immediate convergence, making
ReNoise an almost identical operation.
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Figure 7 in the main paper illustrates the exponential decrease in distances
between consecutive elements z(k)t and z

(k+1)
t , which confirms the algorithm’s

convergence towards the stationary point of the operator G.

Validation for the Averaging Strategy Notably, the proposed averaging
strategy is aligned with the conclusions described in the main paper and also
converges to the desired stationary point. To verify this claim we will show
that if a sequence z(k)t+1 converges to some point zt+1, then the averages z̄(k)t+1 =
1
k

∑k
i=1 z

(i)
t+1 converges to the same point. That happens to be the stationary

point of the operator G. We demonstrate it with the basic and standard calculus.
Assume that z(k)t+1 = ε

(k)
t+1 + zt+1 with ∥ε(k)t+1∥ → 0 as k → ∞. For a fixed ε we

need to show that there exists K so that ∥z̄(k)t+1 − zt+1∥ < ϵ for any k > K. One
has

z̄
(k)
t+1 − zt+1 =

k∑
i=1

ε
(i)
t+1

k

There exists m such that ∥ε(k)t+1∥ < 0.5 · ε once k > m. Then we have

∥
k∑
i=1

ε
(i)
t+1

k
∥ ≤

∥
∑m
i=1 ε

(i)
t+1∥

k
+

∥
∑k
i=m+1 ε

(i)
t+1∥

k
≤

∥
∑m
i=1 ε

(i)
t+1∥

k
+
ε

2

·(k −m)

k
≤

∥
∑m
i=1 ε

(i)
t+1∥

k
+
ε

2

given that m is fixed, we can always take k sufficiently large such that

∥
∑m
i=1 ε

(i)
t+1∥

k
<
ε

2

this ends the proof. The very same computation conducts a similar result if the
elements’ weights wk are non-equal.

2 Implementation Details

We used BLIP-2 [4] to generate captions for the input images, which were then
used as prompts for the diffusion models. In Table 1, we provide all hyperpa-
rameters of ReNoise inversion per model, optimized for the best reconstruction-
editability trade-off.

Where {wi} are the renoising estimations averaging weights, and λpair and
λpatch-KL are the weights we assign to each component of the edit enhancement
loss:

Ledit = λpair · Lpair + λpatch-KL · Lpatch-KL
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Table 1: Implementation details of ReNoise with Stable Diffusion [9], SDXL [8], SDXL
Turbo [10] and LCM LoRA [5].

Implementation details

Model Name SD 1.4 SDXL SDXL Turbo LCM LoRA
Noise Sampler DDIM DDIM Ancestral-Euler DDIM
No. denoising steps 50 50 4 4
No. renoising iterations 1 1 9 7
Weights for t < 250 w1, w2 = 0.5 w1, w2 = 0.5 w1, ..., w4 = 0.25 w1, ..., w4 = 0.25
Weights for t > 250 w2 = 1.0 w2 = 1.0 w8, ..., w10 = 0.33 w6, ..., w8 = 0.33
λpair 10 10 10 20
λpatch-KL 0.05 0.055 0.055 0.075

3 Additional Experiments

Editing Results With SDXL Turbo Figure 2 showcases additional image
editing examples achieved using our ReNoise inversion method. These edits are
accomplished by inverting the image with a source prompt, and then incorpo-
rating a target prompt that differs by only a few words during the denoising
process.

Reconstruction and Speed We continue our evaluation of the reconstruction-
speed tradeoff from Section 5.1 in the main paper. Figure 3 presents quanti-
tative LPIPS results for the same configuration described in the main paper.
As expected, LPIPS scores exhibit similar trends to the PSNR metric shown
previously.

Image Editing Ablation Figure 5 visually illustrates the impact of edit en-
hancement losses and noise correction when editing inverted images using SDXL
Turbo [10]. While achieving good reconstructions without the Ledit regulariza-
tion, the method struggles with editing capabilities (second column). Although
the Ledit regularization enhances editing capabilities, it comes at the cost of re-
duced reconstruction accuracy of the original image, as evident in the two middle
columns. In the third column, we use LKL as defined in pix2pix-zero [7]. While
Lpatch-KL surpasses LKL in original image preservation, further improvements
are necessary. These improvements are achieved by using the noise correction
technique. To correct the noise, we can either override the noise ϵt in Equation
1 in the main paper (fifth column), or optimize it (sixth column). As observed,
overriding the noise ϵt affects editability, while optimizing it achieves good results
in terms of both reconstruction and editability. Therefore, in our full method,
we use Lpatch-KL, Lpair, and optimization-based noise correction.

Editing With ReNoise The ReNoise technique provides a drop-in improve-
ment for methods (e.g., editing methods) that rely on inversion methods like
DDIM [1], negative prompt inversion [6] and more. It seamlessly integrates with
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Original
Image ←− Editing Results −→

“kitten” “broccoli” “made of lego” “plush toy”

“...in the woods” “...in the beach” “...in the desert” “...in the snow”

“lion” “tiger” “monkey” “panda”

“monkey” “beaver” “raccoon” “...in the snow”
Fig. 2: SDXL Turbo editing results. Each row showcases one image. The leftmost
image is the original, followed by three edited versions. The text below each edited
image indicates the specific word or phrase replaced or added to the original prompt
for that specific edit.

these existing approaches, boosting their performance without requiring exten-
sive modifications. Figure 4 showcases image editing examples using Zero-Shot
Image-to-Image Translation (pix2pix-zero) [7]. We compared inversions with
both the pix2pix-zero inversion method and our ReNoise method. Our method
demonstrably preserves finer details from the original image while improving
editability, as exemplified by the dog-to-cat translation.

Inversion for Non-deterministic Samplers In Figure 6 we show more qual-
itative comparisons with “an edit-friendly DDPM” [2] where we utilize SDXL
Turbo [10]. As can be seen, encoding a significant amount of information within
only a few external noise vectors, ϵt, limits editability in certain scenarios, such
as the ginger cat example. It is evident that the edit-friendly DDPM method
struggles to deviate significantly from the original image in certain aspects while
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Fig. 3: Image reconstruction results comparing sampler reversing inversion techniques
across different samplers (e.g., vanilla DDIM inversion) with our ReNoise method using
the same sampler. The number of denoising steps remains fixed. However, the number
of UNet passes varies, with the number of inversion steps increasing in the sampler
reversing approach, and the number of renoising iterations increasing in our method.
We present various configuration options for our method, including options with or
without edit enhancement loss and Noise Correction (NC).

Original
Image Pix2Pix zero Pix2Pix zero

w/ ReNoise
Original
Image Pix2Pix zero Pix2Pix zero

w/ ReNoise

“Cat” −→ “Dog” “Dog” −→ “Cat”

Fig. 4: Zero-Shot Image-to-Image Translation editing results. This figure compares
editing results with Stable Diffusion [9] achieved using two inversion methods: pix2pix-
zero [7] and our proposed ReNoise inversion. As observed, ReNoise inversion preserves
image details while effectively incorporating the desired edits.

also failing to faithfully preserve it in others. For instance, it encounters diffi-
culty in transforming the cat into a ginger cat while omitting the preservation
of the decoration in the top left corner. In addition, the image quality of edits
produced by edit-friendly DDPM is lower, as demonstrated in the dog example.

Improving DDIM Instabilities As mentioned in Section 3.1 of the main
paper, DDIM inversion [1] can exhibit instabilities depending on the prompt.
Figure 7 demonstrates this with image reconstruction on SDXL [8] using an
empty prompt. Notably, incorporating even a single renoising iteration signifi-
cantly improves inversion stability.
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Fig. 6: Comparison with edit-friendly DDPM Inversion with SDXL Turbo. We invert
two images with the prompts: “a cat laying in a bed made out of wood” (top) and “a
dog sitting on the beach with its tongue out” (bottom) and apply two edits to each
image.



ReNoise: Real Image Inversion Through Iterative Noising 9

Original
Image

DDIM
Inversion

+1 ReNoise
Step

Original
Image

DDIM
Inversion

+1 ReNoise
Step

Fig. 7: Comparing reconstruction results with an empty prompt of plain DDIM inver-
sion on SDXL to DDIM inversion with one ReNoise iteration.
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