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Abstract. Severe blurring of scene text images, resulting in the loss
of critical strokes and textual information, has a profound impact on
text readability and recognizability. Therefore, scene text image super-
resolution, aiming to enhance text resolution and legibility in low-resolution
images, is a crucial task. In this paper, we introduce a novel genera-
tive model for scene text super-resolution called diffusion-conditioned-
diffusion model (DCDM). The model is designed to learn the distribu-
tion of high-resolution images via two conditions: 1) the low-resolution
image and 2) the character-level text embedding generated by a latent
diffusion text model. The latent diffusion text module is specifically de-
signed to generate character-level text embedding space from the latent
space of low-resolution images. Additionally, the character-level CLIP
module has been used to align the high-resolution character-level text
embeddings with low-resolution embeddings. This ensures visual align-
ment with the semantics of scene text image characters. Our experi-
ments on the TextZoom and Real-CE datasets demonstrate the supe-
riority of the proposed method to state-of-the-art methods. The source
codes and other resources will be available through the project page:
https://github.com/shreygithub/DCDM.

Keywords: Scene Text Image Super-Resolution · Diffusion-Conditioned-
Diffusion Model · Character-Level CLIP

1 Introduction

Scene text understanding has remained an important area of research in com-
puter vision for over a decade. This field encompasses various tasks, including
scene text recognition [33], scene text retrieval [37], and scene text visual question
answering [1]. A major challenge in these tasks is image degradation, particu-
larly due to low resolution. Additionally, these texts are optically degraded in
the form of blur and noise, which makes the reading the text difficult. Improving
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Fig. 1: Quality enhancement of low-resolution (LR) image using different methods and
their optical character recognition (OCR) results. (a) Generated image by a generic
super resolution method (SRCNN). (b) Generated image by a latent image diffusion
model. (c) Generated image by the proposed method (diffusion-conditioned-diffusion)
that combines the diffusion method based text prior generation and used as a condition
for image diffusion model for scene text image super resolution.

the quality of the text strokes along with removing the noise and blur in the im-
age is termed as scene text image super-resolution (STISR). A good solution is
needed to solve various text understanding tasks in a low-resolution constraint.

In past, various attempts have been made to enhance scene text resolution
along with removing blur and noise for reading the text efficiently by off-the-shelf
OCR. The resolution of scene text images was improved by applying super-
resolution (SR) techniques (illustrated in Fig. 1(a)), such as [42]. Afterward,
textual properties were used to enhance the super-resolution results [40]. A sig-
nificant limitation of general-purpose image super-resolution techniques is their
inability to emphasize text strokes compared to background pixels, which is
needed to improve the visual quality of scene text.

For emphasizing more on text than background pixels, various approaches
have been explored. They can be broadly grouped into the following categories:
text recognition loss [19,40], sequential information [3,39], text mask [49], stroke-
aware loss [20,39], and text prior [16,18,48]. Their common feature is to utilize
some additional information to enhance the low-resolution (LR) text images.
Among those, the text-prior-based methods [16,18,48] uplifted most of the scene
text super-resolution performance. In these methods, a text recognizer is applied
to the LR image during inference and the recognition result is used as a noisy
text prior with recognition errors. It can hinder the performance of the scene
text image super-resolution.

Following the impact of diffusion models on generic image super-resolution [31,
38], an image diffusion-based method trained on synthesized data [23] has been
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recently proposed, which is based on the method illustrated on Fig. 1(b). This
method also relies on a text prior incorporating a text recognizer. However, a
fundamental question arises; that is, “Is a text recognizer necessary for STISR
in inference?” To seek an answer to this question, this work explores the possi-
bility of utilizing latent text diffusion models as a generator of text prior to the
succeeding image diffusion model (as illustrated in Fig. 1(c)). In other words, we
use two diffusion models at once: the latent text diffusion and the image diffu-
sion models. We call the proposed method diffusion-conditioned-diffusion model
(DCDM). Like a text recognizer generates a text prior in the text-prior-based
methods, the latent text diffusion model takes an LR image and outputs the
text prior that conditions the succeeding image diffusion model. A character-
level CLIP (CL-CLIP) model is used to train the latent text diffusion model.
This diffusion-conditioned-diffusion method is good for super-resolution and re-
moving blur impact due to optical degradation while grabbing the text image.

The most similar work to the proposed method is StableCascade (SC) [25],
our concurrent work, which introduced two-stage latent diffusion models (LDMs)
for generating images and image embeddings. The key difference between our
proposed method and SC lies in introducing an image-to-text LDM, which gen-
erates a text before the succeeding text-to-image LDM.

The major contributions of the presented work are as follows:

1. A diffusion-conditioned-diffusion model has been proposed which has utilized
the text characteristics for the image super-resolution for text.

2. We introduce the latent text diffusion model to generate character-level
text embedding from a given low-resolution latent space. It incorporated a
character-level CLIP model (called CL-CLIP) to obtain linguistic and visual
connections.

3. Through detailed experiments, we demonstrate the impact of the diffusion-
conditioned-diffusion model on the STISR.

2 Related Work

2.1 Single Image Super-Resolution (SISR)

The SISR is a task for estimating a high resolution (HR) image from its cor-
responding LR image. The ill-posed nature of the SISR problem adds more
challenges to the problem. In the past, the prior information is used in the form
of a distribution/energy function to aggregate the constraints of the SR image.
Adaptive high-dimensional nonlocal total variation-based adaptive geometric du-
ality prior [29] and sparse regression and statistical image priors [12] are some
important works on reconstruction-based techniques. These hand-crafted-based
methods work well in reducing the virtual artifacts but are still not enough to
fulfill the requirements of the SISR. In recent years, convolutional neural net-
works (CNNs) have been frequently used and accomplish leading performance
for the SISR. The SRCNN pioneers CNN to learn the mapping function between
LR and HR images. In later works, the CNN architectures are designed deeper



4 S. Singh et al.

and with more sophistication to elevate the performance of SISR, for example,
Laplacian pyramid [13], dense connections based [35], residual block, and chan-
nel attention mechanism [46]. In recent work, prior information has been utilized
to boost the performance of CNN architectures for SISR [9].

2.2 Scene Text Image Super-Resolution (STISR)

The general-purpose SISR focuses on natural scene images. The STISR is a spe-
cial case of SISR. Unlike general-purpose SISR, the objective of STISR is not
only to scale up the resolution of the text image but also to focus on improving
text readability. The preliminary methods for STISR adopted CNN architectures
from general-purpose SISR and directly attempted to extend it for the text im-
ages. For ICDAR 2015 competition [26], Dong et al . [7] extended the SRCNN [6]
to text images to achieve the best result in the competition. In [24], three SR
frameworks are designed to accomplish SR on binary document images. The
performances of these initial methods are not good on the text images because
these methods directly utilize the generic SR frameworks and ignore text-centric
properties such as word or character-level layout details. PlugNet [19] utilized
a pluggable SR unit for a designing multi-task framework to perform SR and
recognition hand in hand.

Wang et al . [39] built a real-world dataset named TextZoom for STISR im-
ages. They also proposed a text super-resolution network (TSRN) to address
the STISR problem on real-world text images. The sequential residual block
(SRB) is the main building block of TSRN. The sequential notion of SRB is
covered by using the horizontal and vertical bidirectional long short-term mem-
ory (BLSTM) blocks. Apart from BLSTM blocks (used to capture sequential
information such as text), the TSRN is not doing much for text-related fea-
tures. [3] proposed transformer-based super-resolution network (TBSRN) uses
a self-attention module to process sequential information. The perceptual text
losses as position and content awareness on a character level are applied to help
the text recognition. In [16], embed the text prior (guided by HR) into the STISR
model for better reconstruction of text in the HR scene text images. The meth-
ods for STISR discussed above embed text-prior information to the SR module
to help reconstruct the text in HR images. The embedding of only text prior to
the SR module is insufficient for the STISR. The prior low-resolution features
need to be boosted with the guides of ground truth in training. We aim to design
a module to boost the low-resolution features to support the reconstruction of
the HR text image and achieve better recognition in this paper.

3 Proposed Method

As shown in Fig. 2, we introduce a novel Diffusion Conditional Diffusion Model
(DCDM) consisting of two specialized diffusion-based modules. As shown in the
top part of Fig. 2, the first module, the Latent Text Diffusion Module, is de-
signed to learn the joint distribution between low-resolution images and text
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Fig. 2: The detailed diagram of the proposed method of diffusion-condition-diffusion.
It consists of two forward passes, one for the latent text diffusion model and the other
for the latent image diffusion model. The latent text diffusion model consists of a
character-level CLIP model for alignment between characters and the structural part
of an image. The latent text diffusion model acts as a conditioning module for the
latent image diffusion model. The dotted line flow is only used during a training phase.

priors. This module excels in discerning complex dependencies between latent
images and textual information, providing a comprehensive understanding of
their interplay. Complementing this, as shown in the bottom part of Fig. 2, the
second module, the Image Diffusion Model, is strategically designed for hybrid
conditioning, considering both textual elements (text prior) and visual com-
ponents (low-resolution images). This dual consideration allows the model to
capture synergistic effects of text and images in a unified manner, enhancing its
ability to discern nuanced patterns and relationships within the data.

3.1 Image Diffusion Model

In our proposed work, we introduce a novel generative model, rooted in the prin-
ciples of the Diffusion Model (DM) [21], which is shown in the bottom part of
Fig. 2. This model’s primary objective is to acquire a high-resolution image, de-
noted as IHR, while considering specific conditioning information denoted as ILR

and additional conditions represented as C. IHR is used only in the training time
as the ground truth. Our approach fundamentally revolves around the concept
of shaping the distribution of the high-resolution images, IHR. This is achieved
through a gradual denoising process, effectively mirroring the reverse dynam-
ics of a predefined fixed-length Markov Chain. Let us denote the predefined
fixed-length as T . Conceptually, our model can be envisioned as an ensemble of
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denoising autoencoders, each with a distinct role in the diffusion process. These
denoising autoencoders, referred to as Image Denoising UNet (IDUnet), are se-
quentially arranged and represented as ϵθ(I

HR
t , ILR, C, t), with t iterating from

1 to T . IHR
t is the intermediate denoised HR image at the t-th step. IHR

1 is full
of noise and IHR

T is expected to be close enough to IHR. The primary objective
function under consideration is formulated as

LILR→IHR = EIHR,ILR,C,ϵ∼N (0,1),t

[
|ϵ− ϵθ(I

HR
t , ILR, C, t)|22

]
, (1)

where t = [1, 2, . . . , T ] is a uniform distribution function. The central element of
this objective function is the UNet denoising function, denoted as ϵθ. This func-
tion is intricately conditioned by multiple components, encompassing IHR and
ILR signifying image information, C representing text embedding (see Sec. 3.2),
and ϵ following a standard normal distribution, N (0, 1) [31]. Our objective func-
tion aims to optimize the alignment between image spaces and the denoising
function while considering diverse conditioning elements, all within a fixed for-
ward process.

3.2 Conditioning mechanisms

Our approach significantly extends the framework of DMs by adeptly accommo-
dating and flexibly adapting to the specific conditions encapsulated within C.
These conditions, represented as a hybrid combination of text embeddings and
ILR, actively guide the denoising process. They play a pivotal role in shaping
the contours of the high-resolution image space, IHR, ensuring that it aligns
seamlessly with the unique contextual intricacies encompassed by this hybrid
conditioning. The conditioning strategy within our model adopts a hybrid ap-
proach. Specifically, IHR

t undergoes conditioning through concatenation with
ILR. This resultant concatenated output is further conditioned through text
embeddings, denoted as C ∈ Rm×dτ . It is subsequently mapped to the inter-
mediate layers of the UNet through the use of a cross-attention layer [36]. It is
denoted by Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V , where Q, K, and V are

the query, key, and value matrices, respectively. They are respectively given in
the forms of Q = W

(i)
Q · φi([I

HR
t , ILR]), K = W

(i)
K · C, and V = W

(i)
V · C, where

W
(i)
V ∈ Rd×di , W (i)

Q ∈ Rd×dτ , and W
(i)
K ∈ Rd×dl represent learnable projection

matrices [11, 30, 36], and φi([I
HR
t , ILR]) ∈ RN×di signifies a (flattened) interme-

diate representation within the UNet, implemented through ϵθ. This formulation
illustrates how the attention mechanism adapts to the context: Q is derived from
the concatenation of IHR

t and ILR, K is conditioned on text embeddings C, and
V is also influenced by C.

3.3 Latent Text Diffusion Model

The Latent Text Diffusion Model, shown in the top part of Fig. 2, is an LDM-
based model [30] tailored for generating text embeddings while conditioned on
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the low-resolution latent space ZLR. Serving as a critical component within this
framework, it capitalizes on the intrinsic capabilities of LDMs to synthesize text
embeddings that align with and enhance the information embedded in the low-
resolution latent space. This module’s pivotal role is manifested in its seamless
integration of textual data into the generative process. This integration empow-
ers the model to yield outputs of heightened quality, enriched with text-related
content intricately linked to the specified ZLR. The denoising autoencoders, re-
ferred to as Latent text denoising Unet (LTD Unet), are sequentially arranged
and represented as ϵθ(Ct, Z

LR, t), with t iterating from 1 to T . Similar to IHR
t ,

Ct is the intermediate denoised text prior at the t-th step. The primary objective
function, denoted as LZLR→C , is expressed as

LZLR→C = ECt,ZLR,ϵ∼N (0,1),t

[
|ϵ− ϵθ(Ct, Z

LR, t)|22
]
, (2)

where LZLR→C serves as the primary loss function. The random variable ϵ follows
a normal distribution, N (0, 1), while t obeys a uniform distribution from 1 to T .

Latent Text Denoising UNet: At the core of this function lies the Latent
text denoising UNet (LTD UNet), denoted as ϵθ(Ct, Z

LR, t). This objective func-
tion plays a pivotal role in training, compelling the LTD UNet to generate ϵ
values closely aligned with the desired values. This enhancement, in turn, bol-
sters the model’s capacity to denoise and refine latent text representations effec-
tively. Additionally, low-resolution latent space ZLR ∈ RN×d, are incorporated
into UNet’s intermediate layers through a cross-attention layer. It is defined
by Attention(Qc,Kc, Vc) = softmax

(
QcK

T
c√

d

)
Vc, where Qc = W

(i)
Qc

· φi(Ct, t),

Kc = W
(i)
Kc

·ZLR, and Vc = W
(i)
Vc

·ZLR. Here, the matrices W
(i)
Vc

, W (i)
Qc

, and W
(i)
Kc

are learnable projection matrices, and the matrix φi(Ct, t) signifies an interme-
diate UNet representation.

Character-level CLIP: During the training phase, addressing the challenge
posed by the absence of ground truth text embedding or text tokens in the
Scene Text Super-Resolution problem becomes essential, given that only pairs
of HR and LR images are provided. To tackle this challenge, we leverage a text
prior [16,18] by passing the HR image through it, generating the necessary text
embeddings.

To align HR text embeddings with LR images, we employ an unsupervised
visual encoder ZLR, guided by a contrastive loss that encourages similarity be-
tween text and images [27]. Additionally, we apply multi-view projection tech-
niques to ensure a meaningful encoding of LR images while incorporating textual
information derived from HR images through the text prior. This alignment pro-
cedure holds significance for latent text diffusion and facilitates various tasks [28].
It effectively bridges the gap between the textual information extracted from HR
images and the encoded representations of LR images.
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4 Experiments

4.1 Implementation Details

The complete work is based on the training of three modules namely, CL-CLIP,
text denoising UNet, and image denoising UNet modules.

Character-Level CLIP (CL-CLIP) In the CL-CLIP model, the text embed-
ding is generated by a pre-trained CRNN [32], serving as the text prior. This
CRNN employs 37 tokens with a maximum sequence length of 26 tokens and
has an embedding dimension of 512. For the visual encoder, a Vision Trans-
former (ViT) architecture, as proposed by Dosovitskiy et al. [8], is utilized. This
ViT-based architecture employs eight heads with a patch size of 16 and has an
embedding dimension of 512.

The model architecture aligns with prior works, incorporating established
techniques and architectures to achieve effective performance. Furthermore, an
AdamW optimizer is initialized with a learning rate of 1e − 5 and betas (0.9,
0.999) to manage gradient moment decay. AdamW combines the advantages of
Adam optimization with L2 weight decay, enhancing regularization by encour-
aging smaller model weights and preventing overfitting. The remaining hyper-
parameters follow those outlined in the work by Radford et al. [30].

Latent text denoising UNet The structure of Latent text denoising UNet
is the same as the LDM [30]. It comprises of encoder and decoder paths, fea-
turing residual blocks with self-attention layers. Set the model channels to 128
and head channels to eight to control the network’s capacity. In the encoder
path, arrange a series of residual blocks with self-attention to capture complex
features. Downsample the spatial resolution based on specified attention reso-
lutions (4×, 2×, 1×). The decoder path should symmetrically decode the data
by upsampling. Ensure that both the encoder and decoder paths consist of two
residual blocks for feature transformation. Introduce a channel multiplier that
initiates with 1× channels and progressively scales up by factors of one, two,
and four. This ensures adaptability to feature complexity throughout the archi-
tecture. Importantly, apply residual blocks for both upscaling and downscaling
operations to maintain feature consistency. For the loss function, employ Mean
Squared Error (MSE) to evaluate pixel-wise differences, measuring the quality
of denoised images. To optimize the model, select the Adam optimizer, which is
known for its efficient convergence properties. As for the LDM, configure them
in a similar fashion, adhering to specific parameters outlined in the LDM pa-
per [30]. These parameters include setting a base learning rate of 5 × 10−06,
linear_start at 0.0015, linear_end at 0.025, and conducting training for a total
of 1,000 timesteps. Additionally, use the DDIM Sampler [34] and run it for 250
timesteps.
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Image denoising UNet The Image Denoising UNet structure closely resembles
DDPM [10]. Similar to the Latent Denoising UNet, it incorporates downscaling,
bottom, and upscaling blocks. The introduction of a channel multiplier, starting
with 1x channels and progressively scaling up by factors of one, two, and four,
is consistent. Cross attention is applied at multiple scales, and after residual
blocks, self-attention layers are employed. In the bottom layer, the four sets of
self and attention layers are applied alternatively. The loss function employed
is Mean Squared Error (MSE), evaluating pixel-wise differences to measure the
quality of denoised images. For optimization, the Adam optimizer is chosen for
its efficient convergence properties.

Following a similar configuration to DDPM, specific parameters outlined in
the DDPM paper [10] are adopted. This includes setting a base learning rate
of 5× 10−05, linear_start at 10−4, linear_end at 0.02, and conducting training
for a total of 1, 000 timesteps. Additionally, the DDIM Sampler [34] is utilized,
running for 250 timesteps.

4.2 Experimental Settings

Dataset Description The TextZoom dataset, as outlined in Wang et al .’s pa-
per [39], comprises a substantial collection of 21, 740 LR-HR paired text images,
and it includes associated text labels. This dataset originates from two promi-
nent super-resolution datasets, RealSR [2] and SRRAW [44], specifically adapted
for text image super-resolution. These LR-HR pairs are gathered under diverse
real-world conditions, utilizing various cameras with varying focal lengths. This
diversity aims to mimic real-world scenarios and challenges. The training set has
17, 367 samples, and the testing set is further divided into three subsets based
on the focal length of the camera. The testing subsets are named easy, medium,
and hard with 1, 619 samples, 1, 411 samples and 1, 343 samples correspondingly.

The Real-CE dataset is a real-world Chinese-English benchmark dataset [17]
comprising 33,789 text line pairs. It includes 24,666 Chinese texts and 9,123
English texts. The dataset is divided into 23,547 lines for training, 3,414 lines
for 4× zooming evaluation, and 6,828 lines for 2× zooming evaluation. The text
line sizes vary from 16×22 to 1,156×2,883, comprising 3,755 character categories.

Evaluation Metric Three recognizers, ASTER [33], CRNN [32], and MORAN [15],
are used to evaluate the accuracy metric on the TextZoom dataset. On the Real-
CE dataset, the pre-trained TransOCR model [32,43] is utilized as the accuracy
metric. Additionally, for evaluating the quality of super-resolution, the PSNR
and SSIM metrics are employed [41].

Training Strategy In our proposed approach, we employ HR-LR paired text
images to train a diffusion-based module exclusively designed for denoising tasks
within a UNet architecture. Notably, this module focuses solely on enhancing
the denoising capabilities and does not contribute to the upscaling of the input
image. To align the LR images with the desired HR dimensions, we opt for
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Table 1: Comparison of the proposed method with SOTA methods on three subsets
of the TextZoom dataset. The results are evaluated on the recognition accuracy of
three text recognizers: CRNN [32], MORAN [15], and ASTER [33]. BICUBIC (HR)↓
indicates the downscaled bicubic interpolation of HR images, which can be regarded as
equivalent to ground truth. BICUBIC (LR)↑ indicates the upscaled bicubic interpola-
tion of LR images, which shows the baseline recognition results. TCDM [23] is trained
without synthesized data for a fairer comparison. The best results are highlighted in
bold and the second-best results are underlined, with the exception of the ground truth
category.

Category Method Accuracy of CRNN Accuracy of MORAN Accuracy of ASTER
Easy Medium Hard Avg. Easy Medium Hard Avg. Easy Medium Hard Avg.

Baseline BICUBIC 36.4% 21.1% 21.1% 26.8% 60.6% 37.9% 30.8% 44.1% 67.4% 42.4% 31.2% 48.2%(LR)↑

Generic
SRCNN [6] 41.1% 22.3% 22.0% 29.2% 63.9% 40.0% 29.4% 45.6% 70.6% 44.0% 31.5% 50.0%

image
SRResNet [14] 45.2% 32.6% 25.5% 35.1% 66.0% 47.1% 33.4% 49.9% 69.4% 50.5% 35.7% 53.0%

super-
RCAN [45] 46.8% 27.9% 26.5% 34.5% 63.1% 42.9% 33.6% 47.5% 67.3% 46.6% 35.1% 50.7%

resolution
SAN [5] 50.1% 31.2% 28.1% 37.2% 65.6% 44.4% 35.2% 49.4% 68.1% 48.7% 36.2% 52.0%

HAN [22] 51.6% 35.8% 29.0% 39.6% 67.4% 48.5% 35.4% 51.5% 71.1% 52.8% 39.0% 55.3%
Text- TSRN [39] 52.5% 38.2% 31.4% 41.4% 70.1% 55.3% 37.9% 55.4% 75.1% 56.3% 40.1% 58.3%
based TBSRN [3] 59.6% 47.1% 35.3% 48.1% 74.1% 57.0% 40.8% 58.4% 75.7% 59.9% 41.6% 60.0%

backbone PCAN [47] 59.6% 45.4% 34.8% 47.4% 73.7% 57.6% 41.0% 58.5% 77.5% 60.7% 43.1% 61.5%
Stroke- TG [4] 61.2% 47.6% 35.5% 48.9% 75.8% 57.8% 41.4% 59.4% 77.9% 60.2% 42.4% 61.3%aware

TPGSR [16] 63.1% 52.0% 38.6% 51.8% 74.9% 60.5% 44.1% 60.5% 78.9% 62.7% 44.5% 62.8%
Text-prior TATT [18] 62.6% 53.4% 39.8% 52.6% 72.5% 60.2% 43.1% 59.5% 78.9% 63.4% 45.4% 63.6%

C3-STISR [48] 65.2% 53.6% 39.8% 53.7% 74.2% 61.0% 43.2% 60.5% 79.1% 63.3% 46.8% 64.1%
Diffusion +

Text-prior + TCDM [23] 67.3% 57.3% 42.7% 55.7% 77.6% 62.9% 45.9% 62.2% 81.3% 65.1% 50.1% 65.5%
Synthsized

DCDM Proposed 65.7% 57.3% 41.4% 55.5% 78.4% 63.5% 45.3% 63.4% 81.8% 65.1% 47.4% 65.8%
Ground BICUBIC 76.4% 75.1% 64.6% 72.4% 91.2% 85.3% 74.2% 84.1% 94.2% 87.7% 76.2% 86.6%truth (HR) ↓

a straightforward solution—applying bicubic interpolation to the LR images.
Therefore, in the context of our work, LR images essentially undergo a simple
bicubic upscaling process from their original low-resolution state to match the
specified HR image size.

In the training, we exclusively utilized HR images as ground truth, without
incorporating any additional text tokens in contrast to TCDM [23], which used
the ground truth text as their ground truth. As we show later in Tab. 1, the
accuracy of HR images is no better than 82% on average. Since the ground truth
text is always correct, our proposed method is overwhelmingly disadvantageous
compared to TCDM.

4.3 Experimental Results

To provide a comprehensive assessment, the proposed method is compared with
a wide variety of methods. It includes generic image super-resolution methods
(SRCNN [6], SRResNet [14], RCAN [45], SAN [5], and HAN [22]), text-based
backbone networks (TSRN [39], TBSRN [3], and PCAN [47]), a stroke-aware
loss-based method (TG [4]), text-prior networks (TPGSR [16], TATT [18] and
C3-STISR [48]), and diffusion networks with text prior and synthesized data
(TCDM [23]) on the TextZoom dataset. Additionally, as a baseline for compari-
son, we evaluate the text recognition accuracy of images upscaled through simple
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Table 2: Comparison of the proposed method with SOTA methods on three subsets
of the TextZoom dataset. The results are evaluated on PSNR and SSMI. “-” indicates
that the value is not available. TCDM [23] is trained without synthesized data for a
fairer comparison. The best results are highlighted in bold and the second-best results
are underlined.

Category Method PSNR SSMI (×10−2)
Easy Medium Hard Avg. Easy Medium Hard Avg.

Baseline BICUBIC (LR)↑ 22.35 18.98 19.39 20.35 78.84 62.54 65.92 69.61

Generic
SRCNN [6] 23.48 19.06 19.34 20.78 83.79 63.23 67.91 72.27

image
SRResNet [14] 24.36 18.88 19.29 21.03 86.81 64.06 69.11 74.03

HAN [22] 23.30 19.02 20.16 20.95 86.91 65.37 73.87 75.96
Text- TSRN [39] 25.07 18.86 19.71 19.70 88.97 66.76 73.02 71.57
based TBSRN [3] 23.46 19.17 19.68 19.10 87.29 64.55 74.52 70.66

backbone PCAN [47] 24.57 19.14 20.26 21.49 88.30 67.81 74.75 77.52
Stroke- TG [4] - - - 21.40 - - - 74.56aware

TPGSR [16] 24.35 18.73 19.93 19.79 88.60 67.84 75.07 72.93
Text-prior TATT [18] 24.72 19.02 20.31 21.52 90.06 69.11 77.03 79.30

C3-STISR [48] - - - 21.51 - - - 77.21
Diffusion +
Text-prior + TCDM [23] - - - 22.83 - - - 79.58
Synthsized

DCDM Proposed 26.47 20.29 21.25 22.87 90.80 68.73 77.34 79.54

Table 3: Comparison of STISR methods with the proposed method on the Real-
CE dataset [17] for 2x and 4x scaling, evaluated on PSNR, SSIM (×10−2), and text
recognition accuracy (ACC).

×4 ×2

Method Trained on TextZoom Trained on Real-CE Trained on TextZoom Trained on Real-CE
PSNR SSIM ACC PSNR SSIM ACC PSNR SSIM ACC PSNR SSIM ACC

TSRN [39] 17.47 48.53 17.96 18.11 48.50 23.16 18.73 56.76 24.71 18.99 52.33 28.54
TPGSR [16] 17.37 49.13 20.76 18.07 47.58 23.26 17.99 53.12 26.55 18.83 55.62 30.07
TBSRN [3] 17.59 49.19 22.46 18.33 48.26 25.27 18.41 54.56 29.05 19.01 53.66 31.81
TATT [18] 17.43 50.10 21.00 17.96 49.04 23.30 18.24 56.67 27.55 19.06 57.72 31.27
DCDM 18.13 50.89 22.94 18.91 50.90 25.49 18.87 56.89 29.34 19.23 58.12 31.94
HR image - - 48.07 - - 45.14 - - 48.07 - - 45.14

bicubic interpolation (denoted as BICUBIC (LR)↑). The proposed method is also
evaluated on the RealCE dataset [17].

Quantitative Results The proposed method is compared with other meth-
ods. The results are summarized in Tab. 1. From the table, it has been observed
that the proposed method has outperformed all generic image super-resolution
methods (SRCNN [6], SRResNet [14], RCAN [45], SAN [5], and HAN [22]) in
all test sets. It shows the superiority of the proposed method over the tradi-
tional generic image super-resolution methods. The proposed method is also
better compared to text-based backbone networks (TSRN [39], TBSRN [3],
and PCAN [47]) in all three test datasets and across all three recognizers. The
proposed method also achieves superior results than the stroke-level loss based
method (i.e., TG [4]). We also compare our proposed method with the text prior
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Table 4: Ablation study to identify the impact of latent text diffusion model in the
proposed diffusion-conditioning-diffusion model. The results are evaluated on the recog-
nition accuracy of three text recognizers: CRNN [32], MORAN [15], and ASTER [33].
TD and ID indicate the latent text diffusion model and the latent image diffusion
model, respectively. The best results are highlighted in bold. The gains of the proposed
method are shown in parentheses.

Method Comp. Accuracy of CRNN Accuracy of MORAN Accuracy of ASTER
TD ID Easy Medium Hard Easy Medium Hard Easy Medium Hard

DCDM
✗ ✓ 65.2% 56.5% 41.3% 78.1% 61.7% 44.5% 80.4% 64.5% 46.7%w/o text

DCDM ✓ ✓
65.7% 57.3% 41.4% 78.4% 63.5% 45.3% 81.8% 65.1% 47.4%
(↑0.5%) (↑0.8%) (↑0.1%) (↑0.3%) (↑1.8%) (↑0.8%) (↑1.4%) (↑0.6%) (↑0.7%)

approach (TPGSR [16], TATT [18] and C3-STISR [48]), which shares the use of
text prior and is closely related to our approach. Our proposed method outper-
form outperformed on comparison with text prior methods. Finally, the diffusion
networks with text prior and synthesized data (TCDM [23]) is compared with
our proposed method. The table shows that both our proposed method and
TCDM achieved the best accuracy in seven out of 12 columns. Therefore, our
proposed method was comparable to TCDM. It should be noted that TCDM has
an advantage in this comparison: as argued above, TCDM uses the text ground
truth in the training, whereas our proposed method does not.

The evaluation of the proposed model on super-resolution image quality is
presented in Tab. 2. Our model demonstrates significant performance improve-
ments, nearly outperforming other methods in terms of both PSNR and SSIM
metrics. The detailed results show the effectiveness of the proposed approach in
enhancing the quality of super-resolution images compared to existing methods.

The performance comparison shown in Tab. 3 highlights the efficacy of var-
ious state-of-the-art STISR methods on the Real-CE dataset for 2× and 4×
upscaling. The evaluation metrics used are PSNR, SSIM, and text recognition ac-
curacy (ACC) with the pre-trained TransOCR model [32,43]. The table presents
results for models trained and tested on Real-CE, as well as models trained on
TextZoom and tested on Real-CE. The results demonstrate that the proposed
method consistently outperforms the compared methods across both upscaling
factors and all three evaluation metrics, regardless of the training dataset.

Qualitative Results In Fig. 3, we conduct a qualitative analysis of our pro-
posed model, comparing it with representative models from different categories:
SRCNN [6] (a generic image super-resolution method), TBSRN [39] (a text
super-resolution backbone method), TG [4] (a stroke-level trained model), and
TATT [18] (a text prior-based model). These comparisons are crucial to assess
the model’s performance comprehensively.

To comprehensively assess the proposed model, we conducted a comparison
using diverse samples featuring variations in contrast, color, degrees of blurri-
ness, orientation, and other factors. Fig. 3 includes a subset where our proposed
model excels in correct recognition, surpassing all other models in the ability
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Fig. 3: High resolution images generation by various state-of-the-art methods and the
proposed method. BICUBIC (LR) and HR indicate the input to the methods and
ground truth, respectively. The text recognition results by ASTER [33] are shown under
the images. The characters in green and red indicate correct and incorrect recognition
results, respectively.

to produce accurate results. While TATT [18] is specifically trained with a loss
function designed to handle text orientation, our proposed model, interestingly,
is not explicitly trained with any orientation loss. Nevertheless, our model per-
forms comparably to TATT [18] in handling orientation-related challenges. In
the accompanying figure, we present a sample that is correctly recognized by
our model but is misread by other state-of-the-art Scene Text Image Super-
Resolution (STISR) models. This visually illustrates the superior performance
of our approach, particularly in terms of text recognition. The results underscore
the robustness and effectiveness of our proposed model across a spectrum of chal-
lenging scenarios, showcasing its potential for advancing the field of STISR. In
summary, our results, as presented, underscore the effectiveness of our proposed
model across various facets of text-based image super-resolution, spanning accu-
rate recognition, the importance of text prior, and high-quality image generation.

4.4 Ablation Study

In this section, an ablation study is carried out to confirm the effectiveness of
the components of the proposed method. Since the proposed method consists of
two diffusion models, the impact of the text diffusion block has been analyzed by
removing the text-based conditioning module (denoted by “DCDM w/o text”).
This ablation is mentioned in Tab. 4. It has been observed that text diffusion
has a positive impact on the proposed model (DCDM). The addition of text dif-
fusion to the image diffusion via conditioning helps to uplift the accuracy of all
used text recognizers in all three subsets of datasets. The second variant of our
proposed model involves the removal of the image conditioning. In this configura-
tion, the generated text embedding from the text-based latent diffusion module
is used as input for the low-resolution latent. This text embedding condition
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Low resolution

Ground Truth

Second Variant

Fig. 4: Some images generated from the low-resolution images (first row) by removing
the image latent conditioning in the proposed model (DCDM). Still, the model can
render the correct text, but fidelity is compromised.

is then employed to guide the subsequent image diffusion model in generating
high-resolution images. This variant eliminates the direct low-resolution condi-
tioning of the model. The generated results from this second variant are visually
presented in Fig. 4, showcasing the model’s capability to generate high-quality
images based on text embeddings and diffusion techniques.

5 Limitations

Our current implementation consume a significant amount of time [34] in the
diffusion solver steps. We expect that it is mitigated by just plugging a more
efficient substitute. Another limitation of this paper is that we could not compare
the proposed method and TCDM under a fair condition (see Appendix A).

6 Conclusion

In this paper, we introduced a novel approach to scene text image super-resolution
(STISR) through the diffusion-conditioned-diffusion model (DCDM). This model
incorporates two distinct diffusion modules, addressing text denoising and im-
age denoising. The latent diffusion module for text denoising plays a critical
role in generating a text prior, effectively mapping noise to character embed-
dings with the aid of encoded low-resolution images. The image encoder, trained
with high-resolution image text embeddings using the character-level CLIP (CL-
CLIP) model, contributes significantly to this process. The resulting character
embedding prior serves as a conditioning criterion for the diffusion module dedi-
cated to image denoising. Additionally, a conditioning mechanism involving low-
resolution images and a normal distribution further refines the model.

In contrast to the proposed method, conventional STISR methods rely on
a text recognizer. Hence, we posed the question, “Is a text recognizer necessary
for STISR during inference?” To answer the question, quantitative and qualita-
tive evaluations on the TextZoom and Real-CE datasets were performed. The
quantitative results revealed an improvement over state-of-the-art methods, em-
phasizing the model’s effectiveness. Qualitatively, the generated images not only
demonstrated realistic characteristics but also maintained fidelity under the pro-
posed DCDM framework. The experimental results allow us to conclude “No, a
latent text diffusion model can effectively replace a text recognizer.”
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