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This supplementary material first presents Additional Results, which are or-
ganized into five sections: 1) trade-off between consistency and time, 2) time
cost comparisons, 3) visual ablation studies of variance alignment, 4) visual
comparisons with TexFusion, and 5) more visual comparison results. Next, the
limitations of the proposed method are discussed. Thereafter, we offer Algorithm
Details about the core JNP and MV-AR modules. Fourthly, we deduce the in-
equality of Rasterization Variance Reduction. Finally, further details about the
evaluation dataset are provided.

1 Additional Results

Trade-off between Consistency, Fidelity and Time. Our experiments re-
veal that the number of views significantly impacts efficiency and performance.
We conduct ablation studies to analyze the influence of view numbers. Tab. 1
summarizes the results, from which three key conclusions can be drawn:

– When comparing models (1) to (4), an increasing number of views results in
an opposite trend between fidelity metrics (FID, ClipFID) and the consis-
tency metric (ClipVar). More views cause more overlaps, leading to higher
consistency; however, more overlap areas cause more blurriness, resulting in
lower fidelity.

– Comparing models (1) to (4), the number of views and the cost time are
positively correlated, more views require more generation time. Addition-
ally, by comparing models (5) and (6), the inpainting refinement stage takes
approximately 11 seconds.

– Comparing models (4) and (5), we propose a sampling view policy that uti-
lizes 9 views during the denoising process and samples a subset of 4 views
during the pixel aggregation process. This trade-off between consistency,
fidelity, and time enables achieving high consistency while maintaining rela-
tively higher fidelity.

Time Cost Comparison. We compared the runtime efficiency of VCD-Texture
against prior approaches on a GPU server with eight NVIDIA RTX A800 GPUs.
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Table 1: Ablations for view number on SuxTex dataset. LView represents latent views
used in the denoising process, 4 × 90 means 4 views with a 90-degree interval each,
PVnum denotes the view number used for pixel aggregation.

No. LView PVnum Inpaint FID ↓ ClipFID ↓ ClipScore ↑ ClipVar ↑ Runtime (s) ↓

(1) 4× 90 4 51.47 6.00 31.54 82.13 70.6
(2) 6× 60 6 55.32 6.77 31.81 83.11 93.4
(3) 8× 45 8 57.17 7.01 31.57 83.36 98.5
(4) 9× 40 9 59.71 7.56 31.69 84.03 103.4
(5) 9× 40 4 56.05 6.88 31.62 83.94 93.1
(6) 9× 40 4 ✓ 56.29 6.84 31.65 83.97 104.0

The results are presented in Tab. 2. For clarity, we organized the evaluated meth-
ods into two categories: Fitting (training-based neural networks for multi-view
texture assimilation) and Re-Projection (rasterization-based re-projection with-
out training). Re-Projection methods significantly outperformed Fitting meth-
ods, being an order of magnitude faster. Within Re-Projection, Texture [6]
demonstrates the quickest performance times under default configuration, which
were on par with SyncMVD [5].

Since we apply a fine mesh Mf in pixel aggregation, which takes more time
in reprojecting colors to the mesh, and also introduce an additional inpainting
refinement stage, this results in a marginal increase in runtime compared to
Texture and SyncMVD [5]. To improve efficiency, we design a fast version of
our algorithm (Ours-Fast), which incorporates three optimizations: 1) reducing
denoising steps from 50 to 30; 2) remeshing the source mesh at a coarse level
(from 256 to 128 resolution) to speed up color reprojection; and 3) removing the
inpainting stage. This fast version achieves the fastest speed while maintaining
high performance.

Table 2: Runtime Comparisons. VNum denotes the number of views, TType repre-
sents texture drawing type, and Re-Proj means texture drawing by color re-projection.
‘Ours-Fast’ is implemented with fewer denoising steps from 50 to 30, lower mesh reso-
lution from 256 to 128, and without the inpainting stage, which still outperforms other
competitors.

Method TType VNum FID ↓ ClipFID ↓ ClipScore ↑ ClipVar ↑ Runtime (s) ↓

Text2Tex [3] Fitting 36 112.41 16.26 30.08 81.45 842.20
Repaint3D [7] Fitting 9 78.65 10.65 30.88 78.96 611.60
Texture [6] Re-Proj 8 150.21 26.92 26.90 82.37 79.50
SyncMVD [5] Re-Proj 10 65.30 16.76 28.78 81.93 83.30
Ours Re-Proj 9 56.29 6.84 31.65 83.97 104.00
Ours-Fast Re-Proj 9 62.57 9.73 31.42 83.10 74.40
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Visual Ablation of Variance Alignment. The analysis of the standard de-
viation curve, presented in Fig. 1(a), indicates that iterative rasterization within
the denoising phase results in a reduction in the magnitude of feature variance,
which is likely to cause Depth-SD to produce images that are blurred or exces-
sively smooth. To validate this conclusion, we ran experiments with and without
applying variance alignment under 100 denoising steps, respectively. Fig. 1(b)
shows the generated images. Comparing images without VA (first and third
columns) to images with VA (second and fourth columns), we can observe that
images without VA have lower contrast and much more blurriness, in contrast,
images with VA exhibit higher fidelity and more distinct textural details. This
proves that our proposed variance alignment can improve the image quality pro-
duced by Depth-SD when frequently conducting rasterization.

w/o VA w/ VA

(a) (b)
w/o VA w/ VA

w/o VA w/ VA

w/o VA w/ VA

Fig. 1: The effectiveness of VA. (a) shows the standard deviation curve of three de-
noising policies; (b) showcases the qualitative comparison with and without VA.

Visual Comparison with TexFusion. TexFusion [1] employs a similar la-
tent texture methodology. However, at the time of writing this manuscript, the
authors had not made their code or textured mesh data publicly available. Conse-
quently, we have opted to utilize the images presented in the original publication
for visual comparison. To visualize the top view, we have incorporated two ad-
ditional views (46◦, 0◦) and (46◦, 180◦) into our default horizontal viewpoints.
Fig. 2 presents a visual comparison, from which we observed higher fidelity and
finer details in our results.

While TexFusion [1] integrates an ancillary VGG-based loss to diminish the
discrepancy between the latent and pixel domains. Nevertheless, it fails to ef-
fectively address the issue of pixel inconsistencies across views, resulting in tex-
tures that are perceptibly blurred. In contrast, our approach employs a two-stage
pipeline that initially enforces consistent feature generation within the latent do-
main, followed by a refinement process through pixel domain inpainting. This
two-stage strategy synergistically enhances the consistency and fidelity of the
synthesized textures.

More Visual Comparison. As depicted in Fig. 3, we provide more quali-
tative comparisons against state-of-the-art counterparts, further validating the
effectiveness and superiority of our proposed approach.
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Fig. 2: Qualitative comparisons with TexFusion.

Source Mesh Texture Text2Tex Repaint3D SyncMVD Ours

Fig. 3: Qualitative comparisons of text-guided texture synthesis. Prompts from top to
down are: “CD player”, “banjo”, “lemon”, “dell inspiron white”, “Toilet paper holder with
tp”, “target”, “Chair stool armchair stuhl”, “kare sideboard janus”, “flask” , “sofa”.
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2 Limitations

Our research is subject to two principal limitations, primarily attributable to
the constraints inherent in the pre-trained diffusion model. Firstly, the issue of
pre-illumination: the images synthesized by the SD model display variations in
luminance, leading to instances of local overexposure in textures. This challenge
has been addressed by the development of a diffusion model [8] devoid of light-
ing effects. Secondly, we identify the presence of local artifacts: the Depth-SD
technique synthesizes images based on a combination of depth maps and textual
prompts. Due to the discrepancy in complexity between the rudimentary 3D
mesh geometry and the intricate training images, the resulting depth map of the
synthesized image fails to align precisely with the conditional depth map. This
misalignment results in the projection of unmatched pixel colors onto the corre-
sponding 3D vertices, thereby generating local artifacts. A potential solution to
this issue lies in fine-tuning texture using methods such as PatchGAN [4], which
employs a contrastive approach to learning the distribution of image patches.

3 Dataset and Evaluation details

We evaluated our method on three datasets, the statistical details of which are
presented in Table 3. Notably, there are some meshes listed in TexFusion [1]
were not found in the ShapeNet [2] dataset, and we utilize meshes from the same
category as replacements for those invalid meshes. Since the Fréchet Inception
Distance (FID) metric can be influenced by the number of evaluation images,
we report the ground-truth numbers (GT-Num) in the third column of Table 3.

The comprehensive list of mesh names and prompts employed for each dataset
is provided in the supplementary material, whose file names are: subtex.txt, sub-
obj.txt and subshape.txt. We use the same data loader as Repaint3D [7], which
can be found at: Data Loader of Repaint3D

Table 3: Evaluation Datsets.

Name Num GT-Num

SubTex 43 344
SubShape 445 3560
SubObj 401 3208

4 Proof of Rasterization Variance Reduction

Formally, Jensen’s inequality states that if φ(·) is a convex function, and zi∈Nz

are points in interval Z, where Nz is the number of sampling points, then for any

https://github.com/kongdai123/repainting_3d_assets/blob/256af2cbeceaa009cf67fa424de85a161355c4b7/repainting_3d_assets/main_shapenet.py#L11
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non-negative weights λi that satisfy the condition:
∑Nz

i=1 λi = 1, the following
inequality holds:

φ

(
Nz∑
i=1

λizi

)
≤

Nz∑
i=1

λiφ(zi). (1)

For random variable set Xi, the variable Yj are combined by variables sam-
pled from Xi, which is computed by:

Yj =

N∑
i=1

λi ·Xij (2)

where j denotes index in Y, i is the variable set index. λi represents non-negative
weights, which satisfy the condition

∑N
i=1 λi = 1, λi ≥ 0. Let M denotes the

element number of Y, The variance of Y is defined by:

V ar(Y) =

M∑
j=1

[Yj − µ(Y)]2/(M − 1) (3)

=

M∑
j=1

[

N∑
i=1

λi ·Xij −
N∑
j=1

λi · µ(Xi)]
2/(M − 1) (4)

=

M∑
j=1

[

N∑
i=1

λi · (Xij − µ(Xi)]
2/(M − 1) (5)

(6)

As square is a convex function, based on the Jensen’s inequality 1, For each
variable Yj , we have:

[

N∑
i=1

λi · (Xij − µ(Xi)]
2 ≤ λi ·

N∑
i=1

[Xij − µ(Xi)]
2 (7)

Let EY |j and EX|ij denote the squared deviation term in Y and Xi sep-
arately, which are defined as EY |j = [Yj − µ(Y)]2, EXi|j = [Xij − µ(Xi)]

2.
Referring previous inequality, we have:

EY |j ≤ λi ·
N∑
i=1

EXi|j (8)

This means each squared deviation term EY |j in Y is no large than the linear
combined squared deviation term EXi|j in Xi . And then apply the expectation
with total number M , we have:
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V ar(Y) =

M∑
j=1

EY |j/(M − 1) (9)

≤
M∑
j=1

λi ·
N∑
i=1

EXi|j/(M − 1) =

N∑
i=1

λi ·
M∑
j=1

EXi|j/(M − 1) (10)

As V ar(Xi) =
∑M

j=1 EXi|j/(M − 1), thus we have:

V ar(Y) ≤
N∑
i=1

λi · V ar(Xi) (11)

5 Algorithm Details

We present pseudo codes for two core modules: Joint Noise Prediction in Algo-
rithm 1, Multi-View Aggregation and Rasterization (MV-AR) in Algorithm 2.
To optimize efficiency, the Joint Noise Prediction module was solely implemented
at the highest resolution of the U-Net architecture. Additionally, cross-attention
mechanisms operating in 3D space were also attempted but did not yield per-
formance improvements.
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Algorithm 1 Joint Noise Prediction Algorithm

Input: Coarse mesh Mc, Cameras Cn, denoised latent feature F2D
n

Parameters: View number N , Vertex face index {fu}3u=1 in each face, Vertex Co-
ordinate P v

j , Feature size (w, h), Rasterizaiton function R(n). In Pytorch3D library,
R(n) contain three output tensors: Depth map tensor D̂n, barycentric coordinate
tensor Bn and pixel and mesh face relation tensor Rp

n specifying the indices of the
faces which overlap each pixel.
Return: F̃2D

l|n : updated latent features at level l of U-Net
1: procedure Joint Noise Prediction Algorithm
2: for each level l ∈ L do

3: #Step1: Extract 3D features F3D
l

4: for each view n ∈ N do
5: Build rasterization relation R(n) = Pytorch3D.Render(Mc, Cn)
6: Compute 3D coordinates PF

n,i =
∑3

u=1(B
u
n,i)

2 · P v
fu

7: Extract F3D
l from 2D foreground features with 3D coordinates.

8: end for

9: #Step2: Split 3D features into groups
10: Compute bounding box Bp of 3D space features F3D

l .
11: Group F3D

l into different groups F3D
l|g by grid size Gt

12: #Step3: Compute view-aware 2D self-attention in each 2D plane
13: for each view index n ∈ N do
14: Compute F̃2D

l|n = SelfAttn(F2D
l|n)

15: end for

16: #Step4: Compute grid-aware 3D self-attention in each 3D grid
17: for each group index g ∈ Gt do
18: Compute F̃3D

l|g = SelfAttn(F3D
l|g )

19: end for
20: Obtain 3D features F̃3D

l|n in 2D space by removing coordinates of F̃3D
l

21: #Step5: Combine features from 2D and 3D space
22: F̃2D

l|n = Mean(F̃3D
l|n + F̃2D

l|n)
23: end for
24: end procedure
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Algorithm 2 Multi-View Aggregation and Rasterization

Input: Coarse mesh Mc, Cameras Cn, denoised latent feature F2D
n

Parameters: View number N , Vertex index {j}Jc
j=1, Feature size (w, h), Upper

bound of scene distance Zfar, Exponents τb, τd, τw for the power function, Raster-
izaiton function R(n), In Pytorch3D library, R(n) contain three output tensors:
Depth map tensor D̂n, barycentric coordinate tensor Bn and pixel and mesh face
relation tensor Rp

n specifying the indices of the faces which overlap each pixel.
Return: X̃2D

n : updated latent predictions for each view n ∈ N
1: procedure Multi-View Aggregation and Rasterization

2: #Step1: Initialize view scores Sn and distance scores Dn for each view n ∈ N
3: for each view n ∈ N do
4: Build rasterization relation R(n) = Pytorch3D.Render(Mc, Cn)
5: Compute view score Sn = Cosine(Normal(Mc), Direction(Cn))
6: Compute depth score Dn = 1− D̂n/Zfar

7: end for

8: #Step2:Initialize vertex features X̂n,j and vertex weights Wn,j

9: for each view n ∈ N and vertex index j ∈ Jc do
10: Compute normalization factor η =

∑
i ψ(Bn,i, τb)

11: Re-project 2D to 3D X̂3D
n,j =

∑
iX

2D
n,i · ψ(Bn,i, τb)/η, the relation of each

vertex X̂3D
n,j and 2D pixel values X2D

n,i are derived from Rp
n.

12: Compute view weight Wn,j =
∑

i Sn,i · ψ(Dn,i, τd) · ψ(Bn,i, τb)/η
13: end for

14: #Step3:Aggregate each view features to final texture feature
15: for each vertex index j ∈ Jc do
16: Compute normalization factor ω =

∑
n ψ(Wn,j , τw)

17: View Aggregation X̂3D
j =

∑
n X̂3D

n,j · ψ(Wn,j , τw)/ω
18: end for

19: #Step4:Rasterize final texture feature to 2D plane feature
20: for each view n ∈ N do
21: Compute X̃2D

n = Pytorch3D.Render(Mc, Cn, X̂
3D)

22: Replace background features in X̃2D
n with X2D

n

23: end for
24: end procedure


	The Supplementary of `VCD-Texture: Variance Alignment based 3D-2D Co-Denoising for Text-Guided Texturing'

